Архив статей журнала
Рассматривается модель системы, фазовое пространство которой представлено аттрактором рандомизировнной системы итерированных функций. Отличительной особенностью пространства состояний такой системы является то, что оно может быть представлено фрактальными множествами. Геометрически показано, что данный факт соответствует наличию доминирующего элемента среди всех координат фазового пространства. Следствием этой особенности точек фазового пространства является возможность задать отношения эквивалентности, выделив в отдельный класс множества точек с доминирующим элементом. Показано, что разделение фазового пространства системы на множества эквивалентности позволяет определить количества симметрий состояний системы для каждого из классов эквивалентностей. При этом, множества, обладающие доминирующим элементом, в силу топологических особенностей будут обладать большим числом симметрий по сравнению с другими точками этого фазового пространства. В данной работе предлагается считать, что состояния системы, обладающие большим числом симметрий, обладают большей устойчивостью и наоборот. Использование альтернативной процедуры позволяет построить дополнительный фрактал, располагаемый в зоне лакуны, - свободной от точек основного фрактала. Дополнительный фрактал сохраняет все геометрические свойства, но будучи составленным из точек с меньшим числом симметрии, будет менее устойчивым. Получение дополнительных фрактальных множеств предлагается рассматривать как фазовый переход системы. В работе предпринята попытка найти ответ на вопрос: почему внешне схожие фрактальные структуры объектов могут проявлять различную устойчивость.