Архив статей

Отношение персонала к внедрению ИИ-решений: пилотное исследование в транспортной сфере (2025)
Выпуск: № 5 (191) (2025)
Авторы: Демарев Андрей Борисович, Петрова Ирина Эдуардовна

Настоящая статья посвящена анализу отношения персонала транспортного предприятия к внедрению искусственного интеллекта (ИИ) для мониторинга состояния операторов. На основе обзора теорий принятия инноваций и социотехнических подходов формируется гипотеза о том, что отношение персонала определяется не только техническими характеристиками системы, но и психологическими, социокультурными и коммуникативными факторами.

Эмпирическая база включает два последовательно связанных этапа: тестирование прототипа в симуляционной среде и натурные испытания в реальных рейсах.

Метод — полуструктурированные интервью с 20 сотрудниками (целевой отбор по стажу и возрасту) с последующим тематическим и частотным анализом; для сопоставления субъективных оценок «до/после» применялась непараметрическая проверка различий. Показано, что принятие ИИ-решения определяют не только технические параметры, но и психологические, социокультурные и коммуникативные факторы: восприятие «наблюдаемости» и контроля, прозрачность алгоритмов, эргономика, участие персонала в доработке. На основе данных предложены управленческие механизмы снижения сопротивления: расширенная коммуникация и объяснимость, вовлечение пользователей в итеративный дизайн, таргетированное обучение и регламент обратной связи. Таким образом, предлагается эмпирически обоснованная модель управляемого внедрения ИИ в организациях повышенной ответственности, релевантная для практик гос- и муниципального управления.

Сохранить в закладках
Арктическая повестка России: проекты, проблемы, цифровые решения (2025)
Выпуск: № 5 (191) (2025)
Авторы: Куклина Евгения Анатольевна

Актуальность. Реализуемые в Арктическом макрорегионе принципиально новые инфраструктурные и производственные решения впоследствии могут быть масштабированы как в субарктических регионах, так и в стране в целом, что обусловливает значимость анализа арктических проектов, проблем, принимаемых решений и актуализирует исследования различных аспектов предметной области. Цель исследования: изучение содержания арктических проектов (в разрезе приоритетных проектов опорных зон развития), проблем и цифровых решений при их реализации. Задачи исследования: характеристика приоритетных проектов опорных зон развития; изучение передовых кейсов нефтегазовых компаний КНР и РФ в области искусственного интеллекта. Методы исследования: системный подход, логический анализ, синтез, контентанализ открытых источников, моделирование. Результаты. Внедрение цифровых технологий в реализации ресурсных арктических проектов заключается в предварительном применении интеллектуального оборудования, использования больших данных, машинного обучения и других ИT-технологий в обработке и анализе данных для разведки и разработки. Внедрение технологий ИИ в ресурсных отраслях только началось и, несмотря на полученный операционный эффект, пока не принесло желаемых масштабных результатов. Оценка эффективности инвестиционных арктических проектов должна базироваться на совокупности показателей коммерческой, социально-экономической и бюджетной эффективности. Предлагаемая концептуальная модель оценки экономической эффективности DT (Digital Twin) включает три уровня оценки в зависимости зрелости двойника и генезиса образования экономического эффекта. Максимальный экономический эффект от внедрения DT достигается за счет автоматизации принятия решений, интеграции DT в производственные процессы в реальном времени и значительного сокращения совокупных операционных расходов. Автономные и когнитивные DT высокого уровня зрелости обеспечивают управленческую гибкость, стратегическое повышение стоимости компании и возможность оперативного реагирования на изменения внешней среды.

Сохранить в закладках
Применение искусственного интеллекта в бизнес-планировании (2025)
Выпуск: № 5 (191) (2025)
Авторы: Раковская Юлия Александровна, Конягина Мария Николаевна

В работе представлен инновационный метод бизнес-планирования при помощи технологии искусственного интеллекта. В быстро меняющихся условиях возможность надежного прогнозирования и планирования высоко востребована. Внедрение технологии искусственного интеллекта и автоматизация процессов анализа и планирования позволяют создать совершенно новую динамичную мультиагентную модель финансового бизнес-планирования, быстро реагирующую на изменение внешних макроэкономических факторов и снижающую риск влияния человека, что и стало результатом исследования. Поставив целью разработать новый, актуальный, современный и высокоточный технологический подход к бизнес-планированию, авторы изучили ряд современных научных исследований по внедрению искусственного интеллекта в процессы финансового планирования и прогнозирования, систематизировали их и выделили интересные и практически реализуемые идеи. В результате предложен подход, позволяющий проводить довольно гибкое и быстро реализуемое бизнес-планирование, показывающее высоконадежный результат в коротком периоде и реализующий возможность оперативного изменения параметров деятельности компании. Однако его внедрение требует модификации процессов бизнес-планирования и внедрения автономной мультиагентной системы, которые также разработаны и предложены в исследовании. Статья будет интересна практикующим экономистам и представителям бизнеса, занимающимся бизнес-планированием, а также ученым и студентам, вовлеченным в проекты стимулирования предпринимательской деятельности.

Сохранить в закладках
Цифровые технологии поддержки принятия решений в юриспруденции: психологический профиль и доверие пользователей (2025)
Выпуск: № 5 (191) (2025)
Авторы: Кузьмин Андрей Юрьевич, Гофман Ольга Олеговна, Ковальчук Сергей Валерьевич

Системы поддержки принятия решений (СППР) представляют собой перспективную технологию на основе искусственного интеллекта (ИИ). На данный момент подобные системы используются в ряде сфер и отраслей экономики, однако область юриспруденции остается одной из наиболее сложных для их внедрения.

Цель данной работы состоит в анализе психологических аспектов взаимодействия пользователя и ИИ в рамках упомянутых систем. На основе анализа существующих моделей взаимодействия человека и технологий, а также авторской методологии представлен дизайн исследования. Представлены результаты фокус-группы с экспертами органов исполнительной и судебной власти (N = 8): место СППР в работе юриста, польза и сомнения в ходе использования подобных систем. Выделены параметры, значимые для профилирования и дальнейшей адаптации систем к конкретному пользователю.

Также в статье обсуждаются перспективы и вопросы внедрения СППР в практике правоприменения.

Сохранить в закладках
Искусственный интеллект: воздействие на систему «образование — рынок труда» (2025)
Выпуск: № 5 (191) (2025)
Авторы: Шестакова Наталия Николаевна, Джанелидзе Михаил Георгиевич

Статья посвящена изучению влияния развития и широкого распространения инструментов искусственного интеллекта (ИИ) на систему образования и рынок труда в современной экономике. В ней намечены важные исследовательские направления, связанные с развитием инструментов ИИ и процессами их интеграции в системе «образование — рынок труда». Представлен комплексный анализ процессов внедрения и интеграции технологий ИИ в существующие производственные процессы и последствий этого для современной системы образования.

Цель исследования — не только оценить трансформацию педагогических практик под влиянием ИИ, но и рассмотреть его опосредованное воздействие на рынок труда, обусловленное кардинальным изменением востребуемых в связи с распространением такового профессиональных компетенций.

Методология и подходы: исследование построено на анализе современных тенденций и включает практический кейс, демонстрирующий возможности ИИ в обработке образовательного контента. Особое внимание уделено оценке рисков и ограничений, связанных с повсеместным внедрением ИИ.

Результаты: выявлены и систематизированы ключевые тренды внедрения ИИ в систему образования, такие как персонализация обучения, автоматизация рутинных функций преподавательской деятельности, появление новых образовательных форматов и практик. Определены перспективные направления использования ИИ в образовательных целях и дана системная оценка сопутствующим рискам его внедрения. Рассмотрены направления трансформации существующих профессий и изменения структуры занятости под влиянием распространения ИИ.

Выводы: обладая огромным потенциалом для улучшения жизни людей, ИИ в то же время связан с углублением цифрового разрыва — он может стать барьером для одних и привилегией для других, а не средством формирования инклюзивного общества. Взаимодействие ИИ с системой образования как социальным институтом представляет собой сложный и многогранный процесс ее инновационного развития. Широкое внедрение инструментов ИИ в процессы обучения — это не просто техническая модернизация, а институциональная трансформация, затрагивающая все стороны образовательной системы. Широкое внедрение ИИ в сферу труда воздействует на структуру занятости и профессиональный состав кадров, меняя тем самым требования к образовательной системе.

Сохранить в закладках
ИИ-ориентированные государственные сервисы: таксономия ответственности и суверенный искусственный интеллект (2025)
Выпуск: № 5 (191) (2025)
Авторы: Носиков Андрей Андреевич

Настоящее исследование анализирует институциональные и технологические вызовы интеграции систем искусственного интеллекта (ИИ) в публичное администрирование и государственные сервисы, фокусируясь на классификации ролей алгоритмов в процессах принятия решений, балансе интересов в сотрудничестве с коммерческими поставщиками ИИ-решений и инфраструктуры, а также обеспечении национальной технологической автономии. Применен качественный междисциплинарный подход, сочетающий нормативноправовой анализ, тематический анализ эмпирических кейсов из практики различных стран и теоретический синтез. Данные собраны из официальных источников, рецензируемых научных публикаций и новостных источников с использованием метода снежного кома для отбора кейсов, а кодирование проводилось итеративно. В результате разработана оригинальная авторская шестиуровневая пирамидальная модель распределения ответственности в зависимости от степени автономии алгоритмов ИИ в цепочке принятия решений: от полной делегации («ИИ-Капитан») через предложение готового решения с утверждением человеком («ИИ-Штурман»), набор конфигураций («ИИ-Советник»), анализ среды с сигнализацией триггеров («ИИ-Наблюдатель» ), выполнение трудозатратных задач с ревизией оператором («ИИ-Рабочие руки») до рутинной поддержки без решений («ИИ-Рутинный помощник»). Модель наложена на градации рисков (высокий, ограниченный, минимальный) для оценки последствий ошибок. Выявлена дилемма государственно-частного партнерства, обеспечивающего доступ к инновациям, но усиливающего зависимость и уязвимости. Также обоснована роль суверенного ИИ как стратегии снижения этих рисков. Для эффективной интеграции алгоритмов в государственные сервисы рекомендуется внедрение обязательной классификации систем ИИ по уровням автономии и критичности, где шестиуровневая таксономия обеспечивает дифференцированный подход к распределению ответственности, минимизируя институциональные пробелы и риски предвзятости.

Сохранить в закладках
Внедрение автономных цифровых платформ в военной сфере: социальное и институциональное измерения (2025)
Выпуск: № 5 (191) (2025)
Авторы: КОВАЛЕВ Андрей Андреевич

В статье рассматривается роль ИИ в военной и управленческой сферах, а также институциональные изменения, которые имеют место вследствие расширения использования автономных цифровых платформ. Обоснование актуальности темы связано с динамичным ростом потенциала использования интеллектуальных систем, радикально изменяющих механизмы принятия решений, способы распределения ответственности и управленческие модели в вооруженных конфликтах настоящего времени. Также подробно рассматриваются изменения в структурах противоборства, возникающие в результате внедрения самообучающихся платформ. Цель исследования — определение механизмов и анализ последствий трансформации военных стратегий, связанных с переходом от классических форм ведения боевых действий к практикам, опирающимся на использование автономных цифровых платформ. В работе был использован институциональный метод для анализа институциональных изменений, происходящих под влиянием внедрения ИИ. Применение системного метода позволило рассматривать ИИ-системы как неотъемлемую часть современного мира, в котором уже невозможно раздельное существование человека и машины. Отмечается, что масштабное внедрение автономных цифровых платформ порождает многообразные риски не только технического, но также антропологического и экзистенциального характера. Рассматриваются и проблема ответственности за результаты принятых решений, и роль человека (в том числе и контролирующая) в меняющемся мире, и правовое обеспечение трансформирующейся реальности. При этом потенциал автономных цифровых систем по настоящее время является предметом серьезных дискуссий, поскольку не определены его границы. Автор приходит к выводу, что роль человека не должна быть номинальной, оператор всегда должен иметь возможность не только проводить мониторинг деятельности ИИ-систем, но также интерпретировать результат принятых решений и в случае необходимости иметь полномочия корректировать их. Очевидно, что переход ИИ от вспомогательного функционала к ведущей роли автономного разработчика сценариев принимаемых решений кардинально меняет систему взаимоотношений между человеком и вычислительными системами, поэтому она нуждается в адаптации к современным алгоритмам принятия управленческих решений, а также в обеспечении соразмерности социальной динамики, общественных ожиданий и направленности институциональных трансформаций.

Сохранить в закладках
Правовое регулирование оценки результативности и эффективности технологической политики в сфере искусственного интеллекта в России (2025)
Выпуск: № 5 (191) (2025)
Авторы: Ефремов Алексей Александрович, Тесленко Александра Андреевна

Цель данного исследования заключается в проведении анализа современного состояния правового регулирования оценки результативности и эффективности технологической политики Российской Федерации, в том числе в сфере развития искусственного интеллекта и в разработке предложений по формированию комплексной системы такой оценки для повышения действенности инструментов государственного управления.

Методы исследования включают формально-юридический метод, который применялся для анализа системы нормативного правового регулирования как в сфере технологической политики в целом, так и в отношении инструментов государственного управления для развития искусственного интеллекта, сравнительно-правовой анализ существующих и проектируемых элементов оценки результативности и эффективности в отношении технологической политики в целом и развития искусственного интеллекта в частности, а также метод правового моделирования для разработки соответствующих рекомендаций по развитию указанной оценки результативности и эффективности.

Результаты исследования показали, что действующее правовое регулирование не содержит единого подхода к оценке результативности и эффективности мер государственной поддержки и стимулирования технологического развития в целом и развития искусственного интеллекта в частности, ориентированной на достижение конечного общественно значимого результата такого развития (технологическое лидерство России, в том числе в сфере искусственного интеллекта). Выявлена терминологическая неопределенность и преобладание оценки выполнения плановых мероприятий над оценкой их реального вклада в достижение и обеспечение технологического суверенитета и технологического лидерства России.

Выводы исследования заключаются в том, что для достижения и обеспечения технологического суверенитета и технологического лидерства России, в том числе в сфере развития искусственного интеллекта, реализация инструментов и мер государственного управления (стимулирования и поддержки развития) должна быть обусловлена внедрением и применением системной оценки результативности и эффективности таких инструментов и мер, включая соответствующий терминологический аппарат, показатели и методику оценки. Обоснован комплекс предложений по совершенствованию проектов нормативных правовых актов в этой сфере, разрабатываемых Минэкономразвития России в 2025 г.

Сохранить в закладках
Внедрение искусственного интеллекта в электронные государственные сервисы: анализ и перспективы развития (2025)
Выпуск: № 5 (191) (2025)
Авторы: Белый Владислав Александрович, Чугунов Андрей Владимирович

Данная статья выступает пропедевтической работой для исследования, целью которого является выявление наиболее вероятных социально-политических и институциональных изменений в условиях внедрения искусственного интеллекта (ИИ) в системы электронных государственных сервисов в России. В основе методологии лежат неоинституциональный и сетевой подходы, а также принципы теории рационального выбора. Это позволяет анализировать формальные и неформальные правила, координацию между субъектами и мотивы их поведения. Источниковую базу составляют публикации из баз РИНЦ, Scopus, WoS и IEEE, программные документы государств и данные по внедрению ИИ в различных секторах. Особое внимание уделяется изучению преимуществ, рисков и изменений, связанных с начавшейся интеграцией ИИ в государственные сервисы. Рассмотренные кейсы внедрения новых технологий демонстрируют значительный потенциал реформирования государственного управления, повышения эффективности услуг, качества коммуникации между властями и гражданами. Выделены значительные риски внедрения ИИ в электронные государственные сервисы. Приведенный анализ показывает, что успешное внедрение ИИ может быть обеспечено сбалансированной стратегией, учитывающей вопросы безопасности, прозрачности и доверия к технологиям. В статье представлены промежуточные результаты исследовательского проекта, направленного на выявление стратегий цифрового поведения отдельных возрастных групп граждан. Так, младшие и средние поколения опасаются замены человека ИИ-инструментами, а старшие не готовы к цифровой трансформации. На основе выявленных тенденций и сценариев внедрения ИИ-инструментов в электронные сервисы сформирована источниковедческая и методическая основа для предстоящего исследовательского проекта.

Сохранить в закладках
ИИ-технологии в государственном управлении: институциональные аспекты и риски применения (2025)
Выпуск: № 5 (191) (2025)
Авторы: Тюрина Юлия Александровна

Стремительно развивающиеся технологии искусственного интеллекта (далее — ИИ) проникают во все сферы жизнедеятельности общества и встраиваются в процессы управления. Скорость их развития, самообучения и спектр возможностей применения поражают воображение. ИИ-технологии становятся частью повседневной жизни человека и условием лидерства, эффективности в бизнесе, политике, науке, образовании, в том числе и на международном уровне.

Последствия столь бурного и повсеместного применения ИИ пока еще не полностью изучены и осознаны, особый интерес в понимании последующих изменений представляет внедрение ИИ-технологий в управлении государством, являющимся особым социальным институтом по своему предназначению, обеспечивающим стабильность и регуляцию в обществе. Ошибки в управлении могут иметь катастрофический эффект.

Это и предопределило цель статьи, а именно — рассмотрение процесса внедрения искусственного интеллекта в работу государства в контексте его институциональной специфики. Для достижения цели была применена методология институционального и деятельностно-активистского подходов, социологическое осмысление уникальности ИИ-технологий, что позволило рассмотреть структурные, нормативно-правовые особенности внедрения ИИ в государственное управление в повседневных практиках работы госслужащих, а также актуализировать существующие риски наблюдаемого процесса.

Сохранить в закладках
УПРАВЛЕНИЕ РАЗВИТИЕМ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА В РОССИИ ЧЕРЕЗ ПРИЗМУ ТЕОРИИ И МЕТОДОЛОГИИ СТРАТЕГИРОВАНИЯ (2024)
Выпуск: № 6 (186) (2024)
Авторы: Аверьянов Александр Олегович

В статье рассматриваются аспекты стратегирования сферы искусственного интеллекта (ИИ) на основе теории и методологии стратегирования В. Л. Квинта. На примере России анализируются ключевые тренды и вызовы, влияющие на развитие ИИ, включая технологический суверенитет, кадровое обеспечение и развитие инфраструктуры. Основное внимание уделено взаимосвязи ИИ с процессами реиндустриализации и инновационного развития экономики. В статье также проводится стратегическая диагностика состояния российской ИИ-сферы, включающая анализ текущих тенденций, перспектив развития и рыночного позиционирования. На основе результатов стратегического анализа и OTSW-матрицы предложены пять стратегических направлений для развития ИИ в России, нацеленных на увеличение экономического эффекта от внедрения ИИ, стимулирование научных исследований и популяризацию ИИ-технологий среди населения и бизнеса. Предложенные направления могут быть использованы для корректировки существующей государственной стратегии в сфере ИИ и обеспечения долгосрочного устойчивого роста и технологической независимости России в условиях глобальной конкуренции.

Сохранить в закладках
ПОЛИТИЧЕСКИЕ АСПЕКТЫ СОТРУДНИЧЕСТВА РОССИИ И КИТАЯ В СФЕРЕ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА В ЗДРАВООХРАНЕНИИ (2025)
Выпуск: № 3 (189) (2025)
Авторы: Наливкина Алёна Дмитриевна

Статья посвящена рассмотрению текущих форм взаимодействия России и Китая в сфере применения технологий искусственного интеллекта в здравоохранении и выявлению векторов их возможного развития. Цель статьи заключается в анализе политических условий и механизмов двустороннего сотрудничества России и Китая в сфере применения технологий искусственного интеллекта в здравоохранении с опорой на кейс-анализ, обзор нормативной базы и сравнительное изучение национальных стратегий развития. В качестве методологической базы использованы анализ научной литературы, сравнительный подход и кейс-анализ, позволяющие выявить ключевые направления и барьеры политического сотрудничества России и Китая в области применения ИИ в здравоохранении. Было установлено, что Китай и Россия успешно внедряют технологии искусственного интеллекта в диагностику и лечение заболеваний, а анализ совместных проектов показал, что российско-китайские инициативы по внедрению искусственного интеллекта в систему здравоохранения обладают благоприятными предпосылками для развития. Также удалось выявить различия в масштабах реализации этих проектов. Китай в целом демонстрирует более масштабный подход, тогда как в России инициативы носят более локальный характер. Основные препятствия на пути двустороннего сотрудничества в этой области обусловлены различиями в правовых режимах, а также языковым барьером. Совместная реализация ИИ-проектов в здравоохранении России и Китая не является исключительно научно-технической инициативой. Это проявление более широкой внешнеполитической стратегии, направленной на развитие независимых технологических систем, снижение зависимости от западных ИТ-решений и укрепление глобальных позиций стран в условиях цифровой трансформации.

Сохранить в закладках