Архив статей журнала
Развитие современных образовательных технологий и появление искусственного интеллекта, который генерирует самые различные данные, открывают новые перспективы во всех областях знаний. Это приводит к изменениям подходов, методик, приемов и средств обучения высшего профессионального образования. В данном исследовании авторы ставят целью определить готовность преподавателей и студентов медицинского вуза использовать в работе материалы, сгенерированные искусственным интеллектом, а также выявить сомнения и перспективы внедрения инструментов современных технологий в образовательный процесс. Материалом для исследования послужили собственные статистические данные авторов, собранные в результате общения с преподавателями в рамках конференций (Оренбург, 2025) и опроса в Яндекс Формах 208 студентов первого курса. Выбранные авторами теоретический и эмпирический методы позволяют рассмотреть объект исследования с ценностной точки зрения, так как в медицинской профессии очень важно личностное взаимодействие врача и пациента. В то же время для достойного поддержания здоровья и охраны жизни населения профессиональные компетенции специалистов здравоохранения всех уровней должны быть подкреплены свободным владением цифровыми и информационными ресурсами работы. Инновационные технологии помогают создавать эффективные образовательные программы, обрабатывать большой объем информации и персонализировать учебный материал. Появляются новые педагогические подходы и стратегии получения знаний, умений и навыков. Только при грамотно выстроенном взаимодействии преподаватель - студент технологии, основанные на искусственном интеллекте, будут работать на цели образования, приводить к повышению академической успеваемости и становлению высокопрофессионального специалиста.
Цифровая трансформация высшего музыкального образования осмысливается в педагогической науке либо в философско-образовательном, либо в технологическом аспектах. Наблюдается дефицит научной рефлексии в области цифровой дидактики. Целью исследования является выявление перспективных направлений использования искусственного интеллекта в высшем музыкальном образовании. В исследовании использовались следующие методы: анализ научной литературы, содержащей кейсы внедрения искусственного интеллекта в высшее музыкальное образование, опрос преподавателей музыки, использующих нейросети в образовательной деятельности (n = 21). Были определены направления использования искусственного интеллекта в преподавании музыки: 1) обучение (сопровождение обучения) вокалу / игре на музыкальном инструменте; 2) развитие (сопровождение процесса развития) качеств музыкальной выразительности (музыкальной эмоциональности); 3) автоматизированная система оценки / анализа исполнительской техники; 4) использование чатов с нейросетями для обучения теории и истории музыки; 5) персонализация процесса обучения; 6) автоматизация работы с содержанием музыкального образования. В реальной практике наиболее востребованы автоматизированная система оценки и использование чатов с нейросетями, автоматизация работы с содержанием музыкального образования. Также дана классификация нейросетей по уровню интеграции решаемых задач: 1) монозадачные; 2) полизадачные; 3) интегральные модели. В зависимости от способа реализации на уровне формы обучения выделены следующие направления: 1) дистанционное обучение; 2) смешанное обучение; 3) интеллектуальные системы обучения. Последнее рассматривается в качестве новой образовательной перспективы. Таким образом, исследование выявило перспективные направления внедрения искусственного интеллекта в высшее музыкальное образование, среди которых наибольшую практическую востребованность показывают автоматизированная оценка исполнительской техники и работа с образовательным контентом, в то время как остальные направления обладают значительным, но еще не реализованным потенциалом.
Текущие исследования по разработке передовых квантовых алгоритмов нацелены на создание набора алгоритмических примитивов, которые могут быть использованы в качестве модулей для различных промышленных рабочих процессов. Цель статьи заключается в рассмотрении различных квантовых алгоритмов для оптимального квантового управления. В работе использовались методы систематического обзора литературы, контент-анализа. Всесторонний поиск осуществлялся в соответствии с рекомендациями PRISMA и проводился в базах Scopus, Web of Science и Google Scholar за период с 2022 по 2025 г. Литература для такого обзора отбиралась в базах данных на основании количества цитирований публикаций, импакт-фактора, индекса Хирша журналов. В практической части исследования использовались методы численного оптимального управления и обучения с подкреплением. В статье представлен обзор исследований современных авторов в области ослабления эффектов шума и декогеренции, анализа ошибок квантовых алгоритмов, а также методов оценки и снижения суммарной погрешности. В процессе исследования в качестве перспективного алгоритма для квантового оптимального управления прорабатываются тепловые ансамбли с целью аппроксимации следа унитарной матрицы. Проводится аналитическая связь между алгоритмом Ахаронова для получения полинома Джонса. Отдельно рассмотрены трехпрядевые косы и их унитарные представления, а также представления на основе тепловых ансамблей. Показана методика измерения математического ожидания фазово-чувствительного оператора обнаружения ансамбля. Доказано преимущество приведенного алгоритма для квантового оптимального управления. Рассмотрен вариационный квантовый алгоритм и его особенности. В работе получены результаты сравнительного анализа наиболее распространенных квантовых алгоритмов оптимального управления. Обозначены пути их усовершенствования с указанием характерных особенностей для каждой модели. Также отмечено, что перспективным направлением дальнейших изысканий является изучение возможностей пересечения областей квантовой механики и машинного обучения, что может привести к созданию новых подходов к управлению квантовыми системами, улучшению существующих алгоритмов.