В статье рассматривается применение генеративно-состязательной сети (GAN) в задаче повышения разрешения изображений в два раза. Приводится описание архитектуры GAN на основе сверточной сети. Сеть обучена с использованием набора данных состоящего из 540 изображений природного ландшафта с разрешением 256 на 256 пикселей. В результате тестирования GAN получены усредненные коэффициенты метрик PSNR, SSIM, MFSD, а также среднеквадратичная ошибка вывода модели VGG-19. Приведены результаты сравнения качества изображений с увеличенным разрешением на основе GAN и методом масштабирования с использованием фильтра Ланцоша.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.