Архив статей журнала
Развитие регионов на основе механизмов реализации инвестиционных проектов с участием государства в рамках концессионных соглашений приобретает особую значимость в условиях масштабных санкционных ограничений, требующих ужесточения контроля за эффективностью использования бюджетных средств с целью повышения отдачи от вложенных инвестиций и минимизации рисков их ненадлежащего освоения. В статье рассматривается построение классификационных моделей оценки таких проектов, позволяющих выявить концессионные соглашения повышенного риска, что позволит государственному заказчику принимать обоснованные решения при выборе исполнителя проекта и обеспечить эффективность управления государственным имуществом. Особенностью предложенного подхода к построению классификационных моделей является использование скрининг-моделей и встроенных инструментов информационно-аналитической системы СПАРК для объективной оценки добросовестности концессионеров на основе финансовых и иных факторов, а также методов дискриптивного анализа больших данных, машинного обучения и метода ближайших соседей при кластеризации региональных инвестиционных проектов по уровню риска ненадлежащего исполнения концессионных соглашений. Подход апробирован на выборке из 1248 региональных инвестиционных проектов, реализуемых в рамках концессионных соглашений. В итоге выделены два кластера проектов с низким и высоким уровнем риска ненадлежащего исполнения концессионером своих обязательств перед государством объемом 83,8 % и 16,2 % соответственно. Для оценки точности и чувствительности к выбросам полученной классификационной модели применялись матрица ошибок и метрика Спирмена, которая показала достаточно высокую точность полученной классификации. Применение построенных моделей возможно как на этапе отбора региональных инвестиционных проектов, так и на этапе мониторинга уже реализуемых проектов для выявления потенциальных рисков их незавершения и своевременного принятия государственным заказчиком необходимых мер реагирования.
В России исторически сложилась высокая региональная дифференциация социоэкономики, в том числе в сфере народонаселения. Новейшие процессы распространения информационно-коммуникационных технологий в регионах тоже протекают с разной скоростью. Влияние цифровизации на рождаемость населения мало изучено, требуется поиск релевантных методов выявления связей между обозначенными процессами. Целью исследования является оценка влияния цифрового развития регионов России на суммарный коэффициент рождаемости в регионах с разным уровнем использования информационно-коммуникационных технологий. В анализе использованы данные Росстата из сборников «Регионы России: социально-экономические показатели», раздел «Информационные и коммуникационные технологии». Применялись методы одномерной и многомерной статистической обработки данных. Проводилась кластеризация регионов РФ по 16 показателям, характеризующим уровень цифрового развития территории. Исследование выполнялось с пятилетним интервалом, в 2014 и 2019 гг. Выделено три кластера, условно названные «лучший», «средний» и «худший». Наиболее высокая поляризация цифрового развития наблюдалась в 2014 г.: в «среднем» кластере находилось 4 региона, в «лучшем» - 29, в «худшем» - 46. В 2019 г. поляризация сгладилась: в «среднем» кластере уже 45 регионов, в «лучшем» - 33, в «худшем» осталось 4: Республика Дагестан, Республика Северная Осетия - Алания, Чеченская Республика, Республика Тыва. Результаты показали, что средний суммарный коэффициент рождаемости ниже в тех кластерах, которые характеризуются более высокими показателями в области цифровизации. За 20142019 гг. в лучшем с точки зрения развития информационных и коммуникационных технологий кластере он снизился на 31,1%, в «среднем» - на 47,7%; в «худшем» кластере наблюдался рост рождаемости на 37,7%. Многослойность и взаимозависимость факторов влияния на процессы рождаемости не позволила точно оценить вклад конкретных факторов цифровизации на деторождение. Обоснована перспективность будущих исследований в направлении статистической оценки влияния цифровизации занятости на репродуктивное поведение.