Рассматривается задача обращения интегрального преобразования Лапласа, относящаяся к классу некорректных задач. Интегральные уравнения сводятся к плохо обусловленным системам линейных алгебраических уравнений, неизвестными в которых являются либо коэффициенты разложения в ряд по специальным функциям, либо приближенные значения искомого оригинала в ряде точек. Рассмотрены различные методы обращения и указаны их характеристики точности и устойчивости, которые необходимо знать при выборе метода обращения для решения прикладных задач. Построены квадратурные формулы обращения, приспособленные для обращения длительных и медленно протекающих процессов линейной вязкоупругости. Предложен метод деформации контура интегрирования в формуле обращения Римана-Меллина, приводящий задачу к вычислению определенных интегралов и позволяющий получить оценки погрешности.