Статья: О ГЕНЕРИЧЕСКОЙ СЛОЖНОСТИ ПРОБЛЕМЫ РАВЕНСТВА В НЕКОТОРЫХ ПОЛУГРУППАХ

Генерические алгоритмы решают проблемы на множествах почти всех входов, выдавая неопределённый ответ для остальных редких входов. В статье доказывается, что проблема равенства генерически разрешима в конечно порождённых полугруппах S, для которых существует такая конгруэнция θ, что полугруппа S/θ является бесконечным финитно аппроксимируемым моноидом с сокращениями и с разрешимой проблемой равенства. Это обобщает ранее полученный результат автора о генерической разрешимости проблемы равенства в конечно определённых полугруппах, которые остаются бесконечными при добавлении свойств коммутативности и сокращения. Отметим, что примерами таких полугрупп служат полугруппы с одним определяющим соотношением, а также так называемые сбалансированные полугруппы, для которых Вон доказал генерическую разрешимость проблемы равенства. В частности, сбалансированными являются классические полугруппы Цейтина и Маканина с неразрешимой проблемой равенства.

Информация о документе

Формат документа
PDF
Кол-во страниц
1 страница
Лицензия
Доступ
Всем
Просмотров
1

Информация о статье

ISSN
0373-9252
Префикс DOI
10.33048/alglog.2022.61.606
Журнал
АЛГЕБРА И ЛОГИКА
Год публикации
2022
Автор(ы)
РЫБАЛОВ А. Н.
Ранее вы смотрели (10)