Статья: МОДЕЛИРОВАНИЕ ПОВЕДЕНИЯ ИНТЕЛЛЕКТУАЛЬНЫХ АГЕНТОВ НА ОСНОВЕ МЕТОДОВ МАШИННОГО ОБУЧЕНИЯ В МОДЕЛЯХ КОНКУРЕНЦИИ

В настоящей статье рассматриваются аспекты применения методов машинного обучения к существующим способам моделирования поведения интеллектуальных агентов для обеспечения возможности агентам повысить показатели своей эффективности в моделях конкуренции. Практическая значимость исследования представлена разработкой подхода к моделированию поведения интеллектуальных агентов, за счет которого можно повысить эффективность их функционирования в таких сферах деятельности, как компьютерные игры, разработка беспилотных летательных аппаратов и поисковых роботов, изучение городской и транспортной мобильности, а также в прочих сложных системах. Проведен обзор существующих методов машинного обучения (обучение с подкреплением, глубокое обучение, Q-обучение) и способов моделирования поведения агентов (модель на правилах, конечно-автоматная модель поведения, деревья поведения). Выбрана наиболее подходящая к задаче комбинация метода обучения и модели поведения: деревья поведения и обучение с подкреплением. Средствами Unity реализована тестовая платформа, разработаны модели поведения четырех основных архетипов агентов, которые должны соревноваться в задаче сбора ресурсов в условиях ограниченного времени. Реализован обученный агент с помощью средств Unity ML и TensorFlow. На базе тестовой платформы проведена серия экспериментов в различных условиях: ограниченность, изобилие, среднее количество ресурсов. В рамках эксперимента тестировалась способность разработанной модели поведения интеллектуального агента выигрывать в условиях конкуренции с агентами, снабженными различными вариантами традиционных моделей поведения на базе деревьев поведения. Оценены работоспособность и преимущества использования разработанной модели поведения. Проанализированы результаты эксперимента, сделаны выводы относительно потенциала выбранной комбинации методов.

Информация о документе

Формат документа
PDF
Кол-во страниц
1 страница
Загрузил(а)
Лицензия
Доступ
Всем

Информация о статье

ISSN
0236-235X
EISSN
2311-2735
Журнал
ПРОГРАММНЫЕ ПРОДУКТЫ И СИСТЕМЫ
Год публикации
2023
Автор(ы)
Парыгин Д. С., Анохин А. О., Садовникова Н. П., Финогеев А. Г., Гуртяков А. С.

Статистика просмотров

Статистика просмотров статьи за 2025 год.

Ранее вы смотрели (7)