Статья: ПЛОТНОСТЬ НАИПРОСТЕЙШИХ ДРОБЕЙ С ПОЛЮСАМИ НА ОКРУЖНОСТИ В ВЕСОВЫХ ПРОСТРАНСТВАХ ДЛЯ КРУГА И ОТРЕЗКА
Исследуются аппроксимационные свойства наипростейших дробей (логарифмических производных алгебраических полиномов), все полюсы которых лежат на единичной окружности. Получены критерии плотности таких дробей в классических интегральных пространствах - в пространствах функций, суммируемых со степенью p на единичном отрезке с ультрасферическим весом, и (весовых) пространствах Бергмана, аналитических в единичном круге и суммируемых со степенью p по площади круга функций. Полученные результаты обобщают на случай произвольного показателя p > 0 известные критерии Чуи и Ньюмана и Абакумова, Боричева и Федоровского для пространств Бергмана с p = 1 и p = 2 соответственно.
Информация о документе
- Формат документа
- Кол-во страниц
- 1 страница
- Загрузил(а)
- Лицензия
- —
- Доступ
- Всем
- Просмотров
- 1
Информация о статье
- ISSN
- 1025-3106
- EISSN
- 2587-5884
- Журнал
- ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ
- Год публикации
- 2024