Статья: ПРОБЛЕМА КОМПРОМЕТАЦИИ СИСТЕМЫ РАСПОЗНАВАНИЯ ИЗОБРАЖЕНИЙ ПУТЕМ ЦЕЛЕНАПРАВЛЕННОЙ ФАЛЬСИФИКАЦИИ ОБУЧАЮЩЕГО МНОЖЕСТВА
Работа посвящена проблеме безопасности систем распознавания изображений, основанных на использовании нейронных сетей. Подобные системы применяются в различных областях и крайне важно обеспечить их безопасность от атак, направленных на методы искусственного интеллекта. Рассмотрены сверточная нейронная сеть ResNet18, проверочное множество ImageNet для распознавания объектов на изображении и отнесения его к классу и состязательные атаки, которые направлены на изменение изображения, обрабатываемые данной нейронной сетью. Сверточные нейронные сети детектируют и сегментируют объекты, которые находятся на изображениях. Атака совершалась на этапе детектирования для того, чтобы не распознавалось присутствие объектов на изображении, а также на этапе сегментации, измененное изображение относило распознанный объект к другому классу. Реализована серия экспериментов, которая показала, как состязательная атака изменяет разные изображения. Для этого взяты изображения с животными и на них совершена состязательная атака, анализ результатов позволил определить количество итераций, необходимых для совершения успешной атаки. Также проведено сравнение исходных изображений с их модифицированными в ходе атаки версиями.
Информация о документе
- Формат документа
- Кол-во страниц
- 1 страница
- Загрузил(а)
- Лицензия
- —
- Доступ
- Всем
- Просмотров
- 1
Информация о статье
- EISSN
- 2310-6018
- Журнал
- МОДЕЛИРОВАНИЕ, ОПТИМИЗАЦИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ
- Год публикации
- 2024