Статья: НЕКОТОРЫЕ ПОЛИНОМИАЛЬНЫЕ ПОДКЛАССЫ ЗАДАЧИ ОБ ЭЙЛЕРОВОМ МАРШРУТЕ В КРАТНОМ ГРАФЕ
В статье рассматриваются неориентированные кратные графы произвольной натуральной кратности k>1. Кратный граф содержит ребра трех типов: обычные, кратные и мультиребра. Ребра последних двух типов представляют собой объединение k связанных ребер, которые соединяют 2 или (k+1) вершину соответственно. Связанные ребра могут использоваться только согласованно. Если вершина инцидентна кратному ребру, то она может быть инцидентна другим кратным ребрам, а также она может быть общим концом k связанных ребер мультиребра. Если вершина является общим концом мультиребра, то она не может быть общим концом никакого другого мультиребра. Рассматривается задача об эйлеровом маршруте (цикле или цепи) в кратном графе, которая обобщает классическую задачу для обычного графа. Задача о кратном эйлеровом маршруте является NP-трудной. Обоснована полиномиальность двух подклассов задачи о кратном эйлеровом маршруте, разработаны полиномиальные алгоритмы. В первом подклассе задано ограничение на множества достижимости по обычным ребрам, которые представляют собой подмножества вершин, соединенных только обычными ребрами. Во втором подклассе задано ограничение на степень квазивершин в графе с квазивершинами. Структура этого обычного графа отражает структуру кратного графа, а каждая квазивершина определяется k индексами множеств достижимости по обычным ребрам, которые инцидентны какому-то мультиребру.
Информация о документе
- Формат документа
 - Кол-во страниц
 - 1 страница
 - Загрузил(а)
 - Лицензия
 - —
 - Доступ
 - Всем
 
Информация о статье
- ISSN
 - 1818-1015
 - EISSN
 - 2313-5417
 - Журнал
 - МОДЕЛИРОВАНИЕ И АНАЛИЗ ИНФОРМАЦИОННЫХ СИСТЕМ
 - Год публикации
 - 2024
 
Статистика просмотров
Статистика просмотров статьи за 2025 год.