Статья: О размерности алгебр Ли инфинитезимальных аффинных преобразований прямых произведений более двух пространств аффинной связности первого типа

Теория движений в обобщенных пространствах яв­ляется одним из направлений в современной диффе­ренциальной геометрии. Вопросами движений в раз­личных пространствах аффинных связностей занима­лись такие ученые, как Э. Картан, П. К. Рашевский, П. А. Ши­роков, И. П. Егоров, А. Я. Султанов. Движения в прямых произведениях двух пространств аффинной связности рассматривались в работе М. В. Моргун.


В случае прямого произведения более двух про­странств аффинной связности вопрос о размерности ал­гебр Ли инфинитезимальных аффинных преобразова­ний данного пространства оставался открытым.

В данной статье получена оценка верхней границы размерности алгебры Ли инфинитезимальных аффин­ных преобразований пространств аффинной связности, представляющих собой прямое произведение не менее трех непроективно-евклидовых пространств опреде­ленного вида.

Для решения этой задачи получена система линей­ных однородных уравнений, которой удовлетворяют компоненты произвольного инфинитезимального аф­финного преобразования. Эта система найдена с ис­поль­зованием свойств производной Ли, примененной к тен­зорному полю кривизны рассматриваемых про­странств. Оценка ранга данной системы позволяет по­лу­чить оценку снизу ранга матрицы рассматриваемой системы.

Информация о документе

Формат документа
PDF
Кол-во страниц
1 страница
Загрузил(а)
Лицензия
Доступ
Всем
Просмотров
3

Информация о статье

ISSN
0321-4796
Журнал
ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ МНОГООБРАЗИЙ ФИГУР
Год публикации
2024
Автор(ы)
Глебова М., Султанов А.Я.