Книга: Математический анализ (функции нескольких вещественных переменных), части 1-2
Как и предыдущие книги того же автора — «Математический анализ (конечномерные линейные пространства)» (М,, 1969) и «Математический анализ (функции одного переменного)» (чч. 1—2—М., 1969, ч. 3—М., 1970),—эта книга. представляет собою учебное пособие по курсу математического анализа. Она не
является учебником и не следует официальным программам курса; она рассчитана в первую очередь на студентов, знакомых уже с элементами дифференциального
и интегрального исчисления в желающих углубить свои знания. В гл. 1 строится теория дифференцирования для функций от конечного или даже бесконечного множества независимых переменных. В гл. 2 рассматриваются высшие
производные. В гл. 3 строится теория интегрирования для функций нескольких переменных. На основе построенного аппарата в гл. 4 излагается классический векторный анализ, в гл. 5—классическая дифференциальная геометрия, которая
развивается в гл. .6 в риманову геометрию. В гл. 7 излагаются избранные вопросы анализа на дифференцируемых многообразиях, в частности теория дифференциальных антисимметричных форм с соответствующими интегральными теоремами.
Информация о документе
- Формат документа
- PDF, DJVU
- Кол-во страниц
- 624 страницы
- Загрузил(а)
- Лицензия
- —
- Доступ
- Всем
- Просмотров
- 7
Предпросмотр документа
Информация о книге
- Каталог SCI
- Математика