Статья: УЧЕТ ПРОИЗВОДСТВА ЭНТРОПИИ В УРАВНЕНИИ ЛИУВИЛЛЯ И ВЫВОД ИЗ НЕГО "МОДИФИЦИРОВАННОЙ" СИСТЕМЫ УРАВНЕНИЙ НАВЬЕ-СТОКСА

Турбулентный и ламинарный режимы течения жидкости или газа неотличимы на масштабах теплового движения молекул. Однако на мезо- и макро- масштабах проявляются существенные отличия между ними. Турбулентный режим, имеет черты стохастического необратимого по времени процесса на всех масштабах рассмотрения, причем, стохастические пульсации в турбулентном режиме на разных масштабах являются коррелированными - имеют коллективный характер. В отличие от него, ламинарный режим является детерминированным и обратимым по времени на всех масштабах, существенно превосходящих масштаб теплового движения молекул. Существуют диапазоны параметров течения выше некоторых критических значений, при которых с разной вероятностью могут реализовываться и существовать как ламинарный, так и турбулентный режимы. Переходы между ними происходят скачкообразно, необратимым образом, то есть обратный переход при изменении параметров в противоположном направлении может происходить (и обычно происходит) при других значениях параметров. Таким образом, уравнение, описывающее оба этих режима, должно допускать неединственное решение, с негладким и неоднозначно определенным переходом между ними.

Ранее были проведены исследования возможности описания как ламинарного, так и турбулентного течения жидкости на основе одних и тех же «модифицированных» уравнений Навье-Стокса, учитывающих в турбулентном режиме производство энтропии за счет возбуждения стохастических возмущений на разных масштабах течения [1-4]. Решения, соответствующие ламинарным и турбулентным режимам течения несжимаемой нетеплопроводной жидкости, были аналитически получены для задач Хагена-Пуазейля, плоского течения Пуазейля и плоского течения Куэтта. Проведено сравнение экспериментальных и аналитических решений для различных значений числа Рейнольдса.

В настоящей работе показана возможность перехода от уравнения Лиувилля, учитывающего производство энтропии на разных масштабах («модифицированного» уравнения Лиувилля) к «модифицированному» уравнению Больцмана через цепочку «модифицированных» уравнений Боголюбова. На основе этих уравнений приводится вывод «модифицированной» системы уравнений Навье-Стокса.

Информация о документе

Формат документа
PDF
Кол-во страниц
1 страница
Загрузил(а)
Лицензия
Доступ
Всем
Просмотров
1

Информация о статье

EISSN
1727-6942
Журнал
ТРУДЫ МАИ
Год публикации
2024
Автор(ы)
ХАТУНЦЕВА О. Н.
Ранее вы смотрели (10)