Статья: КРАЕВЫЕ ЗАДАЧИ ДЛЯ РАЗРЫВНО-НАГРУЖЕННЫХ ПАРАБОЛИЧЕСКИХ УРАВНЕНИЙ
В статье рассматриваются краевые задачи для разрывно-нагруженного параболического уравнения с оператором дробного интегродифференцирования Римана - Лиувилля с переменными коэффициентами. Доказана однозначная разрешимость задачи Коши - Дирихле для разрывно-нагруженного параболического уравнения дробного порядка. В работе также исследуются вопросы существования и единственности решения первой краевой задачи для разрывно-нагруженного уравнения параболического типа. Методом функции Грина, используя свойства фундаментального решения соответствующего однородного уравнения, а также предполагая, что коэффициенты уравнения ограничены, непрерывны и удовлетворяют условию Гельдера, оставаясь неотрицательными, показано, что решение задачи сводится к системе интегральных уравнений Вольтерра второго рода.
Информация о документе
- Формат документа
- Кол-во страниц
- 1 страница
- Загрузил(а)
- Лицензия
- —
- Доступ
- Всем
- Просмотров
- 1
Предпросмотр документа
Информация о статье
- ISSN
- 2541-7525
- EISSN
- 2712-8954
- Журнал
- ВЕСТНИК САМАРСКОГО УНИВЕРСИТЕТА. ЕСТЕСТВЕННОНАУЧНАЯ СЕРИЯ
- Год публикации
- 2024