Статья: ЧАСТИЦА ШТЮКЕЛЬБЕРГА В ЭЛЕКТРИЧЕСКОМ ПОЛЕ, РЕШЕНИЯ С ЦИЛИНДРИЧЕСКОЙ СИММЕТРИЕЙ
В настоящей работе система 11 уравнений для массивной частицы Штюкельберга исследуется в присутствии внешнего однородного электрического поля. Применяет- ся тетрадный формализм, согласно методу Тетрода-Вейля-Фока-Иваненко. Используются цилиндрические координаты и соответствующая диагональная тетрада. Разделив переменные, получили систему дифференциальных уравнений первого порядка в частных производных по координатам (r, z). Для решения этой системы применяется метод Федорова-Гронского, согласно которому на основе 11-мерного оператора спина введены три проективных оператора, позволяющие разложить полную волновую функцию в сумму трех частей. Согласно общему методу, зависимость каждой проективной составляющей от переменной r должна определяться только одной функцией. Также используются дифференциальные ограничения первого порядка, совместимые с системой уравнений и позволяющие преобразовать все уравнения в частных производных по координатам (r, z) в обыкновенные дифференциальные уравнения по переменной z. Последняя система решена в терминах вырожденных гипергеометрических функций. Построены четыре независимые решения, в отличие от случая обычной частицы со спином 1, описываемой уравнением Даффина-Кемера, когда возможны только три решения.
Информация о документе
- Формат документа
- Кол-во страниц
- 1 страница
- Загрузил(а)
- Лицензия
- —
- Доступ
- Всем
- Просмотров
- 3
Предпросмотр документа
Информация о статье
- ISSN
- 1994-5655
- Журнал
- ИЗВЕСТИЯ КОМИ НАУЧНОГО ЦЕНТРА УРО РАН
- Год публикации
- 2024