Статья: INTERPOLATION WITH MINIMUM VALUE OF L2-NORM OF DIFFERENTIAL OPERATOR
For the class of bounded in l2-norm interpolated data, we consider a problem of interpolation on a finite interval [a, b] ⊂ ℝ with minimal value of the L2-norm of a differential operator applied to interpolants. Interpolation is performed at knots of an arbitrary N-point mesh ΔN: a ≤ x1 < x2 < < xN ≤ b. The extremal function is the interpolating natural -spline for an arbitrary fixed set of interpolated data. For some differential operators with constant real coefficients, it is proved that on the class of bounded in l2-norm interpolated data, the minimal value of the L2-norm of the differential operator on the interpolants is represented through the largest eigenvalue of the matrix of a certain quadratic form.
Информация о документе
- Формат документа
- Кол-во страниц
- 1 страница
- Загрузил(а)
- Лицензия
- —
- Доступ
- Всем
- Просмотров
- 1
Предпросмотр документа
Информация о статье
- EISSN
- 2414-3952
- Журнал
- URAL MATHEMATICAL JOURNAL
- Год публикации
- 2024
- УДК
- 51. Математика