Статья: ЛИНЕЙНЫЕ ФУНКЦИОНАЛЬНЫЕ УРАВНЕНИЯ В КЛАССАХ ПЕРВООБРАЗНЫХ ОТ ЛЕБЕГОВСКИХ ФУНКЦИЙ НА ОТРЕЗКАХ КРИВЫХ

Рассматриваются линейные функциональные уравнения на простых гладких кривых с функцией сдвига бесконечного порядка с неподвижными точками на концах кривой. Цель статьи исследовать множества решений таких уравнений в гёльдеровских классах функций Hµ, 0 < µ 1, и в классах первообразных от функций из классов Lp, p > 1, с коэффициентами и правыми частями из этих же классов, и поведение решений в окрестности неподвижных точек. Метод исследования использует критерий Ф. Рисса принадлежности функции к классу первообразных от функций из классов Lp, p > 1. Для классов решений получены оценки параметров µ и p, зависящие от параметров классов коэффициентов и правых частей исследуемых уравнений и свойств функции сдвига в окрестности неподвижной точки.

Информация о документе

Формат документа
PDF
Кол-во страниц
1 страница
Загрузил(а)
Лицензия
Доступ
Всем
Просмотров
1

Предпросмотр документа

Информация о статье

ISSN
2500-0101
EISSN
2619-0117
Журнал
ЧЕЛЯБИНСКИЙ ФИЗИКО-МАТЕМАТИЧЕСКИЙ ЖУРНАЛ
Год публикации
2023
Автор(ы)
Дильман В. Л., Комиссарова Д. А.