Статья: ЛИНЕЙНЫЕ ФУНКЦИОНАЛЬНЫЕ УРАВНЕНИЯ В КЛАССАХ ПЕРВООБРАЗНЫХ ОТ ЛЕБЕГОВСКИХ ФУНКЦИЙ НА ОТРЕЗКАХ КРИВЫХ
Рассматриваются линейные функциональные уравнения на простых гладких кривых с функцией сдвига бесконечного порядка с неподвижными точками на концах кривой. Цель статьи исследовать множества решений таких уравнений в гёльдеровских классах функций Hµ, 0 < µ 1, и в классах первообразных от функций из классов Lp, p > 1, с коэффициентами и правыми частями из этих же классов, и поведение решений в окрестности неподвижных точек. Метод исследования использует критерий Ф. Рисса принадлежности функции к классу первообразных от функций из классов Lp, p > 1. Для классов решений получены оценки параметров µ и p, зависящие от параметров классов коэффициентов и правых частей исследуемых уравнений и свойств функции сдвига в окрестности неподвижной точки.
Информация о документе
- Формат документа
- Кол-во страниц
- 1 страница
- Загрузил(а)
- Лицензия
- —
- Доступ
- Всем
- Просмотров
- 1
Предпросмотр документа
Информация о статье
- ISSN
- 2500-0101
- EISSN
- 2619-0117
- Журнал
- ЧЕЛЯБИНСКИЙ ФИЗИКО-МАТЕМАТИЧЕСКИЙ ЖУРНАЛ
- Год публикации
- 2023