Статья: КРИТЕРИЙ НЁТЕРОВОСТИ ПО УРАВНЕНИЯМ И СЛОЖНОСТИ ПРОБЛЕМЫ РАЗРЕШИМОСТИ ДЛЯ СИСТЕМ УРАВНЕНИЙ НАД ЧАСТИЧНО УПОРЯДОЧЕННЫМИ МНОЖЕСТВАМИ

Представлены результаты, касающиеся основной проблемы алгебраической геометрии над частично упорядоченными множествами с вычислительной точки зрения, а именно задачи разрешимости системы уравнений над частичным порядком. Задача разрешимости систем уравнений разрешима за полиномиальное время, если ориентированный граф, соответствующий частичному порядку, является приведённым интервальным орграфом, и является NP-полной, если основание ориентированного графа соответствующего частичного порядка является циклом длины не меньше 4. Получен также результат, характеризующий возможность перехода от бесконечных систем уравнений над частичным порядком к конечным системам. Алгебраические системы, обладающие указанным свойством, называются нётеровыми по уравнениям. Частично упорядоченное множество обладает свойством нётеровости по уравнениям тогда и только тогда, когда любые его верхние и нижние конусы с базой являются конечно определёнными.

Информация о документе

Формат документа
PDF
Кол-во страниц
1 страница
Загрузил(а)
Лицензия
Доступ
Всем
Просмотров
3

Информация о статье

ISSN
2071-0410
EISSN
2311-2263
Префикс DOI
10.17223/20710410/64/1
Журнал
ПРИКЛАДНАЯ ДИСКРЕТНАЯ МАТЕМАТИКА
Год публикации
2024
Автор(ы)
НИКИТИН А.Ю., КУДЫК И.Д.
Ранее вы смотрели (10)