Статья: Многозадачное обучение для улучшения генерализации в задаче генерации структурированных запросов
Семантический парсинг – это задача перевода выражения на естественном языке в логическое выражение на формальном языке. Примером практического применения семантического парсинга является преобразование текста в запрос к базе знаний. Наиболее популярными задачами преобразования текста в запрос являются задачи преобразования выражения в SQL и в SPARQL. Сдвиг распределения обучающей выборки – одна из главных проблем устойчивости семантических парсеров. Наиболее частым сдвигом в семантическом парсинге является композиционный сдвиг – необходимость генерации новых композиций кода из известных элементов синтаксиса целевого языка. В этой работе исследуется возможность использования предобученных языковых моделей (PLM) вместе с многозадачным обучением. Предлагаются специально разработанные разбиения наборов данных SPARQL и SQL, исходных датасетов LC-QuAD и WikiSQL для имитации сдвига распределения и сравнения оригинального подхода обучения генерации запроса с многозадачным подходом. В работе проведен углубленный анализ разбиений данных и предсказаний модели и показаны преимущества многозадачного подхода над оригинальным для задачи семантического парсинга.
Информация о документе
- Формат документа
- Кол-во страниц
- 1 страница
- Загрузил(а)
- Лицензия
- —
- Доступ
- Всем
- Просмотров
- 3
Информация о статье
- ISSN
- 2072-6759
- Журнал
- ТРУДЫ МФТИ
- Год публикации
- 2024