Статья: ПЕРИОДИЧЕСКИЕ ВОЗМУЩЕНИЯ ОСЦИЛЛЯТОРОВ НА ПЛОСКОСТИ

Представлен обзор результатов исследований, выполненных в текущем столетии на кафедре дифференциальных уравнений Санкт-Петербургского государственного университета. Изучается проблема устойчивости нулевого решения уравнения второго порядка, описывающего периодические возмущения осциллятора с нелинейной восстанавливающей силой при обратимых и консервативных возмущениях. Такие возмущения относятся к трансцендентным возмущениям, при которых для решения вопроса об устойчивости необходимо учитывать все члены разложения правой части уравнения в ряд. Задача об устойчивости при трансцендентных возмущениях была поставлена в 1893 г. А. М. Ляпуновым. Представленные в данной статье результаты по устойчивости осциллятора проводились методами КАМ-теории: рассмотрены возмущения осциллятора с бесконечно малой и бесконечно большой частотой колебаний; даны условия наличия квазипериодических решений в любой окрестности временной оси, откуда следует устойчивость (не асимптотическая) нулевого решения возмущенного уравнения; даны условия устойчивости нулевого решения гамильтоновой системы с двумя степенями свободы, невозмущенная часть которой описывается парой осцилляторов (в этом случае рассматриваются консервативные возмущения).

Информация о документе

Формат документа
PDF
Кол-во страниц
1 страница
Лицензия
Доступ
Всем
Просмотров
3

Информация о статье

ISSN
1025-3106
EISSN
2587-5884
Журнал
ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ
Год публикации
2024
Автор(ы)
ВАСИЛЬЕВА Е. В., БИБИКОВ Ю. Н.