Статья: ТОЧНЫЕ ОЦЕНКИ ПРОИЗВОДНЫХ ВЫСОКОГО ПОРЯДКА В ПРОСТРАНСТВАХ СОБОЛЕВА
В работе получено описание сплайнов Q_{n,k}(x,a), которые задают соотношения y^{(k)}(a)=\int_0^1 y^{(n)}(x)Q^{(n)}_{n,k}(x,a)dx для произвольной точки a\in(0;1) и произвольной функции y\in\mathring{W}^n_p[0;1]. Указана связь задачи о минимизации по параметру a нормы \|Q^{(n)}_{n,k}\|_{L_{p’}[0;1]} (1/p+1/p’=1) с задачей о наилучших оценках производных |y^{(k)}(a)|\leqslant A_{n,k,p}(a)\|y^{(n)}\|_{L_p[0;1]}, а также c задачей нахождения точных констант вложения пространства Соболева \mathring{W}^n_p[0;1] в пространство \mathring{W}^k_\infty[0;1], n\in\mathbb{N}, 0\leqslant k\leqslant n-1. Найдены точные константы вложения для всех n\in\mathbb{N}, k=n-1 при p=1 и при p=\infty.
Информация о документе
- Формат документа
- Кол-во страниц
- 1 страница
- Загрузил(а)
- Лицензия
- —
- Доступ
- Всем
- Просмотров
- 3
Информация о статье
- ISSN
- 0579-9368
- Журнал
- ВЕСТНИК МОСКОВСКОГО УНИВЕРСИТЕТА. СЕРИЯ 1: МАТЕМАТИКА. МЕХАНИКА
- Год публикации
- 2024