Статья: АНАЛИЗ ОТЗЫВОВ ПАЦИЕНТОВ С ИСПОЛЬЗОВАНИЕМ МАШИННОГО ОБУЧЕНИЯ И ЛИНГВИСТИЧЕСКИХ МЕТОДОВ

С развитием цифровизации традиционные методы анкетирования потребителей с целью оценки степени их удовлетворённости качеством услуг уступают место подходу, основанному на автоматической обработке текстовых массивов социальных медиа. Целью работы является определение степени удовлетворённости качеством медицинских услуг пациентов посредством разработки и апробации алгоритма классификации русскоязычных текстовых отзывов, извлечённых из социальных медиаресурсов. Интерес представляет определение тональности отзывов пациентов (положительный/отрицательный) о работе медицинских учреждений и врачей, а также объекты обращения отзыва - качество оказанных медицинских услуг или организация обслуживания пациентов медицинским учреждением. Разработан метод классификации текстовых отзывов о работе медицинских учреждений, размещённых пациентами на двух сайтах отзывов о врачах в России. Проанализировано около 60 тысяч отзывов. Апробированы методы машинного обучения с использованием различных архитектур искусственных нейронных сетей. Разработанный алгоритм классификации имеет высокую эффективность - лучший результат показала архитектура на основе рекуррентной нейронной сети (показатель точности = 0.9271). Применение метода поиска именованных сущностей к текстовым сообщениям позволило повысить эффективность классификации для каждого из классификаторов, базирующихся на использовании нейронных сетей. Для повышения качества классификации требуется семантическое разбиение отзыва по объекту обращения и тональности и последующий учёт полученных фрагментов отдельно друг от друга.

Информация о документе

Формат документа
PDF
Кол-во страниц
1 страница
Лицензия
Доступ
Всем

Информация о статье

ISSN
2223-9537
EISSN
2313-1039
Префикс DOI
10.18287/2223-9537-2025-15-1-55-66
Журнал
ОНТОЛОГИЯ ПРОЕКТИРОВАНИЯ
Год публикации
2025
Автор(ы)
Калабихина И. Е., Мошкин В. С., Колотуша А. В., Кашин М. И., Клименко Г. А., Казбекова З. Г.

Статистика просмотров

Статистика просмотров статьи за 2025 год.