1.Potisomporn, P., Adcock, T.A.A. and Vogel, C.R., 2023. Evaluating ERA5 ReanalysisPredictions of Low Wind Speed Events around the UK. Energy Reports, 10, pp. 4781-4790.https://doi.org/10.1016/j.egyr.2023.11.035
2.Li, X., Yang, J., Han, G., Ren, L., Zheng, G., Chen, P. and Zhang, H., 2022. Tropical CycloneWind Field Reconstruction and Validation Using Measurements from SFMR and SMAPRadiometer. Remote Sensing, 14(16), 3929. https://doi.org/10.3390/rs14163929
3.Campos, R.M., Gramcianinov, C.B., de Camargo, R. and da Silva Dias, P.L., 2022. Assessmentand Calibration of ERA5 Severe Winds in the Atlantic Ocean Using Satellite Data. RemoteSensing, 14(19), 4918. https://doi.org/10.3390/rs14194918
4.Minola, L., Zhang, F., Azorin-Molina, C., Safaei Pirooz, A.A., Flay, R.G.J., Hersbach, H. andChen, D., 2020. Near-Surface Mean and Gust Wind Speeds in ERA5 across Sweden: Towards an Improved Gust Parametrization. Climate Dynamics, 55(3–4), pp. 887-907.https://doi.org/10.1007/s00382-020-05302-6
5.Stopa, J.E. and Cheung, K.F., 2014. Intercomparison of Wind and Wave Data from the ECMWFReanalysis Interim and the NCEP Climate Forecast System Reanalysis. Ocean Modelling, 75,pp. 65-83. https://doi.org/10.1016/j.ocemod.2013.12.006
6.Caires, S., Sterl, A., Bidlot, J.-R., Graham, N. and Swail, V., 2004. Intercomparison of DifferentWind-Wave Reanalyses. Journal of Climate, 17(10), pp. 1893-1913. https://doi.org/10.1175/1520-0442(2004)017<1893:IODWR>2.0.CO;2
. Campos, R.M. and Guedes Soares, C., 2017. Assessment of Three Wind Reanalyses in the North Atlantic Ocean. Journal of Operational Oceanography, 10(1), pp. 30-44. https://doi.org/10.1080/1755876X.2016.1253328
8. Campos, R.M., Guedes Soares, C., Alves, J.H.G.M., Parente, C.E. and Guimaraes, L.G., 2019. Regional Long-Term Extreme Wave Analysis Using Hindcast Data from the South Atlantic Ocean. Ocean Engineering, 179, pp. 202-212. https://doi.org/10.1016/j.oceaneng.2019.03.023
9. Zabolotskikh, E.V. and Chapron, B., 2020. Analyzing the Accuracy of ERA-Interim Data on Total Atmospheric Water Vapor in the Arctic Estimated from AMSR2 Data. Russian Meteorology and Hydrology, 45(3), pp. 179-184. https://doi.org/10.3103/S106837392003005X
10. Kerr, Y.H., Waldteufel, P., Wigneron, J.-P., Delwart, S., Cabot, F., Boutin, J., Escorihuela, M.-J., Font, J., Reul, N. [et al.], 2010. The SMOS Mission: New Tool for Monitoring Key Elements of the Global Water Cycle. Proceedings of the IEEE, 98(5), pp. 666-687. https://doi.org/10.1109/JPROC.2010.2043032
11. Lodise, J., Merrifield, S., Collins, C., Behrens, J. and Terrill, E., 2024. Performance of ERA5 Wind Speed and Significant Wave Height within Extratropical Cyclones Using Collocated Satellite Radar Altimeter Measurements. Coastal Engineering Journal, 66(1), pp. 89-114. https://doi.org/10.1080/21664250.2023.2301181
12. Reul, N., Tenerelli, J., Chapron, B., Vandemark, D., Quilfen, Y. and Kerr, Y., 2012. SMOS Satellite L-Band Radiometer: A New Capability for Ocean Surface Remote Sensing in Hurricanes. Journal of Geophysical Research, 117(C2), C02006. https://doi.org/10.1029/2011JC007474
13. Hauser, D., Abdalla, S., Ardhuin, F., Bidlot, J.-R., Bourassa, M., Cotton, D., Gommenginger, C., Evers-King, H., Johnsen, H. [et al.], 2023. Satellite Remote Sensing of Surface Winds, Waves, and Currents: Where are We Now? Surveys in Geophysics, 44(5), pp. 1357-1446. https://doi.org/10.1007/s10712-023-09771-2
14. Meissner, T. and Wentz, F.J., 2009. Wind-Vector Retrievals under Rain with Passive Satellite Microwave Radiometers. IEEE Transactions on Geoscience and Remote Sensing, 47(9), pp. 3065-3083. https://doi.org/10.1109/TGRS.2009.2027012
15. Meissner, T. and Wentz, F.J., 2012. The Emissivity of the Ocean Surface between 6 and 90 GHz over a Large Range of Wind Speeds and Earth Incidence Angles. IEEE Transactions on Geoscience and Remote Sensing, 50(8), pp. 3004-3026. https://doi.org/10.1109/TGRS.2011.2179662
16. Zabolotskikh, E.V., Reul, N. and Chapron, B., 2016. Geophysical Model Function for the AMSR2 C-Band Wind Excess Emissivity at High Winds. IEEE Geoscience and Remote Sensing Letters, 13(1), pp. 78-81. https://doi.org/10.1109/LGRS.2015.2497463
17. Zabolotskikh, E., Mitnik, L., Reul, N. and Chapron, B., 2015. New Possibilities for Geophysical Parameter Retrievals Opened by GCOM-W1 AMSR2. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(9), pp. 4248-4261. https://doi.org/10.1109/JSTARS.2015.2416514
18. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R. [et al.], 2020. The ERA5 Global Reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), pp. 1999-2049. https://doi.org/10.1002/qj.3803
19. Shimura, T., Mori, N. and Mase, H., 2013. Ocean Waves and Teleconnection Patterns in the Northern Hemisphere. Journal of Climate, 26(21), pp. 8654-8670. https://doi.org/10.1175/jcli-d-12-00397.1
20. Ponce de León, S. and Guedes Soares, C., 2014. Hindcast of Extreme Sea States in North Atlantic Extratropical Storms. Ocean Dynamics, 65(2), pp. 241-254. https://doi.org/10.1007/s10236-014-0794-6
21. Allen, J.T., Pezza, A.B. and Black, M.T., 2010. Explosive Cyclogenesis: A Global Climatology Comparing Multiple Reanalyses. Journal of Climate, 23(24), pp. 6468-6484. https://doi.org/10.1175/2010JCLI3437.1
22. Cheshm Siyahi, V., Kudryavtsev, V., Yurovskaya, M., Collard, F. and Chapron, B., 2023. On Surface Waves Generated by Extra-Tropical Cyclones – Part I: Multi-Satellite Measurements. Remote Sensing, 15(7), 1940. https://doi.org/10.3390/rs15071940
23. Cheshm Siyahi, V., Kudryavtsev, V., Yurovskaya, M., Collard, F. and Chapron, B., 2023. On Surface Waves Generated by Extra-Tropical Cyclones – Part II: Simulations. Remote Sensing, 15(9), 2377. https://doi.org/10.3390/rs15092377
24. Kudryavtsev, V., Cheshm Siyahi, V., Yurovskaya, M. and Chapron, B., 2023. On Surface Waves in Arctic Seas. Boundary-Layer Meteorology, 187, pp. 267-294. https://doi.org/10.1007/s10546-022-00768-9
25. Smirnova, J.E., Golubkin, P.A., Bobylev, L.P., Zabolotskikh, E.V. and Chapron, B., 2015. Polar Low Climatology over the Nordic and Barents Seas Based on Satellite Passive Microwave Data. Geophysical Research Letters, 42(13), pp. 5603-5609. https://doi.org/10.1002/2015GL063865
26. Landgren, O.A., Batrak, Y., Haugen, J.E., Støylen, E. and Iversen, T., 2019. Polar Low Variability and Future Projections for the Nordic and Barents Seas. Quarterly Journal of the Royal Meteorological Society, 145(724), pp. 3116-3128. https://doi.org/10.1002/qj.3608