-
B. Liu, Sentiment Analysis and Opinion Mining. Springer, 2022.
-
W. Zhang, X. Li, Y. Deng, L. Bing, and W. Lam, “A survey on aspect-based sentiment analysis: Tasks, methods, and challenges”, IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 11, pp. 11019-11038, 2022,. DOI: 10.1109/TKDE.2022.3230975 EDN: RIDYXN
-
M. M. Tru\cscǎ and F. Frasincar, “Survey on aspect detection for aspect-based sentiment analysis”, Artificial Intelligence Review, vol. 56, no. 5, pp. 3797-3846, 2023. EDN: MHEQKE
-
A. Naumov, R. Rybka, A. Sboev, A. Selivanov, and A. Gryaznov, “Neural-network method for determining text author’s sentiment to an aspect specified by the named entity”, in CEUR Workshop Proceedings, 2020, vol. 2648, pp. 134-143.
-
E. V. Sergeeva, “Features of speech exposure in the preelection media discourse”, in Aktual’nye problemy gumanitarnogo znaniya v tekhnicheskom vuze, 2021, pp. 237-239.
-
A. Nazir, Y. Rao, L. Wu, and L. Sun, “Issues and challenges of aspect-based sentiment analysis: A comprehensive survey”, IEEE Transactions on Affective Computing, vol. 13, no. 2, pp. 845-863, 2020,. DOI: 10.1109/TAFFC.2020.2970399
-
P. K. Soni and R. Rambola, “A Survey on Implicit Aspect Detection for Sentiment Analysis: Terminology, Issues, and Scope”, IEEE Access, vol. 10, pp. 63932-63957, 2022,. DOI: 10.1109/ACCESS.2022.3183205 EDN: TDVMHL
-
B. Mohammed and others, “Hybrid approach to extract adjectives for implicit aspect identification in opinion mining”, in 11th International Conference on Intelligent Systems: Theories and Applications (SITA), 2016, pp. 1-5,. DOI: 10.1109/SITA.2016.7772284
-
A. O. Kornej and E. N. Kryuchkova, “Semantiko-statisticheskij algoritm opredeleniya kategorij aspektov v zadachah sentiment-analiza”, Izvestiya Yuzhnogo federal’nogo universiteta. Tekhnicheskie nauki, no. 6 (216), pp. 66-74, 2020,. DOI: 10.18522/2311-3103-2020-6-66-74
-
E. I. Gribkov and Y. P. Ekhlakov, "Nejrosetevaya model' na osnove sistemy perekhodov dlya izvlecheniya sostavnyh ob'ektov i ih atributov iz tekstov na estestvennom yazyke", Doklady Tomskogo gosudarstvennogo universiteta sistem upravleniya i radioelektroniki, vol. 23, no. 1, pp. 47-52, 2020,. DOI: 10.21293/1818-0442-2020-23-1-47-52 EDN: ZJPDSF
-
L. Hickman, S. Thapa, L. Tay, M. Cao, and P. Srinivasan, "Text preprocessing for text mining in organizational research: Review and recommendations", Organizational Research Methods, vol. 25, no. 1, pp. 114-146, 2022,. DOI: 10.1177/1094428120971683
-
S. Bird, E. Klein, and E. Loper, Natural language processing with Python: analyzing text with the natural language toolkit. O'Reilly Media, Inc., 2009.
-
U. Naseem, I. Razzak, and P. W. Eklund, "A survey of pre-processing techniques to improve short-text quality: a case study on hate speech detection on Twitter", Multimedia Tools and Applications, vol. 80, pp. 35239-35266, 2021,. DOI: 10.1007/s11042-020-10082-6
-
J. Coates and D. Bollegala, "Frustratingly Easy Meta-Embedding - Computing Meta-Embeddings by Averaging Source Word Embeddings", in Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), 2018, pp. 194-198,. DOI: 10.18653/v1/N18-2031
-
T. Mikolov, K. Chen, G. Corrado, and J. Dean, "Efficient estimation of word representations in vector space". 2013.
-
I. Yamada et al., "Wikipedia2Vec: An Efficient Toolkit for Learning and Visualizing the Embeddings of Words and Entities from Wikipedia", in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, 2020, pp. 23-30,. DOI: 10.18653/v1/2020.emnlp-demos.4
-
A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, "Bag of Tricks for Efficient Text Classification", in Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, 2017, pp. 427-431,. DOI: 10.48550/arXiv.1607.01759
-
A. Kukushkin, "Navec - kompaktnye embeddingi dlya russkogo yazyka". 2020, Accessed: Aug. 11, 2024. [Online]. Available: https://natasha.github.io/navec/.
-
J. Pennington, R. Socher, and C. D. Manning, "GloVe: Global Vectors for Word Representation", in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014, pp. 1532-1543,. DOI: 10.3115/v1/D14-1162
-
Q. Le and T. Mikolov, "Distributed representations of sentences and documents", in International conference on machine learning, 2014, pp. 1188-1196.
-
F. Pedregosa et al., "Scikit-learn: Machine Learning in Python", Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.