МОДЕЛЬ ОНТОЛОГИИ ЗНАНИЙ ДЛЯ ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ ОБРАБОТКИ И АНАЛИЗА ТЕКСТОВ (2024)

Статья посвящена решению научной проблемы создания верхнеуровневого описания модели онтологии знаний для интеллектуальных систем обработки и анализа текстов на естественном языке, построенной на основе оригинальной компонентной архитектуры, обеспечивающей необходимый уровень детализации спецификаций анализируемой текстовой информации. Актуальность данной задачи обусловлена необходимостью развития теоретических основ построения информационных моделей семантических зависимостей внутри текстов на естественном языке. Автором даны определения основным терминам исследуемой предметной области. Представлена формализованная постановка решаемой задачи. Проблема «информационного взрыва», причиной возникновения которой стал экспоненциальный рост объемов цифровой информации, привела к ситуации, когда до 95% информационного потока содержит неструктурированные данные. В подобных условиях, крайне актуальной становится задача создания эффективных интеллектуальных систем поиска и приобретения знаний, в том числе, интеллектуальных систем обработки и анализа текстов на естественном языке. Научным направлением решения этой частной задачи является Text Mining (TM) - раскопка знаний в текстовой информации. В качестве примера прикладной задачи использования приобретенных знаний, в данном исследовании, рассматривается значимая проблема информационной поддержки процессов предупреждения и/или ликвидации последствий чрезвычайных ситуаций. В данной задаче исходными данными являются потоки текстовых сообщений (новостной информации, отчетов о техническом состоянии техногенных объектов, информации о природных явлениях и т.п.), поступающих в центры принятия решений, а на выходе формируются прогностические оценки и/или конкретные инструкции относительно оценки ситуации и предпринимаемых действий определенными специалистами. Одной из причин, сдерживающих развитие интеллектуальных систем обработки и анализа текста для решения задач поиска, приобретения и использования знаний, является недостаточно высокий уровень эффективности моделей и алгоритмов, обеспечивающих комплексное решение описанных выше задач искусственного интеллекта с учетом особенностей семантики и контекста.

Тип: Статья
Автор (ы): Кравченко Даниил Юрьевич
Ключевые фразы: ОНТОЛОГИЯ ЗНАНИЙ, ОБРАБОТКА И АНАЛИЗ ТЕКСТОВ, СЕМАНТИКА, ИНФОРМАЦИОННАЯ ПОДДЕРЖКА, чрезвычайные ситуации, поддержка принятия решений, СТРУКТУРИРОВАНИЕ ИНФОРМАЦИИ

Идентификаторы и классификаторы

УДК
004.89. Прикладные системы искусственного интеллекта. Интеллектуальные системы, обладающие знаниями
eLIBRARY ID
68020566
Текстовый фрагмент статьи