Данная работа посвящена вопросам распределения задач в группах беспилотных летательных аппаратов (БПЛА) при условиях значительного превышения количества задач над количеством агентов. Основными задачами, решаемыми БПЛА, являются: обзор и разведка территорий, обнаружение опасных объектов или мест возникновения чрезвычайных ситуаций, поиск пострадавших и т.п. Эффективность решения перечисленных выше задач достигается путем одновременного использования группы БПЛА, элементы (агенты) которой могут осуществлять параллельное выполнение задач по осмотру и сканированию различных областей пространства. В статье предложен итеративный метод распределения задач в группе БПЛА при значительном превышении количества задач над количеством агентов (5-20 раз). Предлагаемый метод для гетерогенных групп БПЛА базируется на двухэтапной процедуре распределения агентов разных специализаций по кластерам задач с учетом функции ценности агента. На первом этапе производится распределение базовой части агентов, оставшиеся агенты на втором этапе распределяются с целью усреднения пройденного пути каждым агентом. Выполнение задач внутри кластера реализуется методом имитации отжига. Для оценки эффективности вариантов метода произведено сравнение с жадным алгоритмом распределения задач и алгоритмом коллективного распределения целей. Рассматриваемые аналоги являются широко распространенным, универсальными и имеют высокую сходимость решения. Экспериментальные исследования проведены путем компьютерного моделирования, где проведено 2000 экспериментов при различном изменении количества агентов группы и генерации карты задач. Результаты показали высокую эффективность метода распределения задач в части снижения пройденного пути агентами группы БПЛА при выполнении задач в сравнении с аналогами. Эффективность пройденного пути агентами составляет до 28% в зависимости от количества агентов и задач в кластере, что является научным приращением полученного результата исследования.
Идентификаторы и классификаторы
- eLIBRARY ID
- 54071319
Робототехнические приложения и интенсивное развитие микроэлектроники привели к миниатюризации роботов и возможности использовать группы мультироботизированных систем. В данной работе под группой мультироботизированных систем (МРС) понимается гомогенная (рой) или гетерогенная группа мобильных роботизированных агентов с децентрализованной системой управления для совместного выполнения глобальной целевой задачи. В работе рассматривается гетерогенная группа БПЛА как частный случай группы МРС.
Основные свойства группы MРС: масштабирование, коммуникация (связь между агентами), координация, кооперация (коллективное принятие решений). Гетерогенность (неоднородность) отражается в различии набора специализаций и сенсорного оснащения агентов [1, 2]. Преимуществами применения групп и роев MРС является высокая мобильность, низкая стоимость обслуживания, возможность выполнения множества задач, а также возможность масштабирования. Группа БПЛА является частным случаем группы MРС и имеет свою специфику, которая заключается в использовании агентов группы в воздушном пространстве.
Список литературы
- Kalyaev I.A. Models and algorithms of collective control in groups of robots / I.A. Kalyaev, A.R. Gaiduk, S.G. Kapustyan. - M.: FIZMATLIT, 2009. - 280 p. - Text: unmediated.
- Zakiev A. Swarm Robotics: Remarks on Terminology and Classification / Zakiev A., Tsoy T., Magid E. // Third International Conference, ICR 2018, Leipzig, Germany, September 18-22, 2018, Proceedings. 10.1007/978-3-319-99582-3_30 (дата обращения: 07.10.2022). - Text: electronic. DOI: 10.1007/978-3-319-99582-3_30(
- A Survey on Aerial Swarm Robotics / S. Chung [et al.] // In IEEE Transactions on Robotics, vol. 34, no. 4, pp. 837-855, Aug. 2018, 10.1109/TRO.2018.2857475 (дата обращения: 07.10.2022). - Text: electronic. DOI: 10.1109/TRO.2018.2857475(
- Group control of moving objects in uncertain environments / Pshikhopov V.Kh. [et al.]. - M.: FIZMATLIT, 2015. - 305 p. - Text: unmediated.
- Kowalczyk W. Target Assignment Strategy for Scattered Robots Building Formation // Proc. of the 3rd Intern. Workshop on Robot Motion and Control. Poland, Poznan, 2002. - Pp. 181-185. - Text: unmediated.
- N. Mathew. Planning Paths for Package Delivery in Heterogeneous Multirobot Teams / N. Mathew, S.L. Smith and S.L. Waslander // In IEEE Transactions on Automation Science and Engineering, vol. 12, no. 4, pp. 1298-1308, Oct. 2015, 10.1109/TASE.2015.2461213 (дата обращения: 07.10.2022). - Text: electronic. DOI: 10.1109/TASE.2015.2461213(
- Zavlanos M. A distributed auction algorithm for the assignment problem / Zavlanos M., Spesivtsev L., Pappas G. // Proc. of the IEEE Conf. on Decision and Control. - 2008. - Pp. 1212-1217. - Text: unmediated.
- C. Nam. Assignment Algorithms for Modeling Resource Contention in Multirobot Task Allocation / C. Nam and D. A. Shell // In IEEE Transactions on Automation Science and Engineering, vol. 12, no. 3, pp. 889-900, July 2015, 10.1109/TASE.2015.2415514 (дата обращения: 07.10.2022). - Text: electronic. DOI: 10.1109/TASE.2015.2415514(
- A Distributed Version of the Hungarian Method for Multirobot Assignment / S. Chopra [et al.] // In IEEE Transactions on Robotics, vol. 33, no. 4, pp. 932-947, Aug. 2017, 10.1109/TRO.2017.2693377 (дата обращения: 07.10.2022). - Text: electronic. DOI: 10.1109/TRO.2017.2693377(
-
An Optimal Task Allocation Strategy for Heterogeneous Multi-Robot Systems / G. Notomista [et al.] // 2019 18th European Control Conference (ECC), 2019, pp. 2071-2076, 10.23919/ECC.2019.8795895 (дата обращения: 07.10.2022). - Text: electronic. DOI: 10.23919/ECC.2019.8795895(
-
Zavlanos M. A distributed auction algorithm for the assignment problem / Zavlanos M., Spesivtsev L., Pappas G. // Proc. of the IEEE Conf. on Decision and Control. - 2008. - Pp. 1212-1217. - Text: unmediated.
-
Bertsekas D. Parallel synchronous and asynchronous implementations of the auction algorithm / Bertsekas D., Castanon D. // Intern. J. of Parallel Computing. - 1991. - Vol. 17. - Pp. 707-732. - Text: unmediated.
-
L. Luo. Provably-Good Distributed Algorithm for Constrained Multi-Robot Task Assignment for Grouped Tasks / L. Luo, N. Chakraborty and K. Sycara // In IEEE Transactions on Robotics, vol. 31, no. 1, pp. 19-30, Feb. 2015, 10.1109/TRO.2014.2370831 (дата обращения: 07.10.2022). - Text: electronic. DOI: 10.1109/TRO.2014.2370831(
-
Zavlanos M. Dynamic assignment in distributed motion planning with local coordination / Zavlanos M., Pappas G. // IEEE Transactions on Robotics. - 2008. - Vol. 24, № 1. - Pp. 232-242. - Text: unmediated.
-
Zavlanos M. Sensor-based dynamic assignment in distributed motion planning / Zavlanos M., Pappas G. // Proc. of the IEEE Intern. Conf. on Robotics and Automation. - 2007. - Pp. 3333-3338. - Text: unmediated.
-
Optimized Stochastic Policies for Task Allocation in Swarms of Robots / S. Berman [et al.] // In IEEE Transactions on Robotics, vol. 25, no. 4, pp. 927-937, Aug. 2009, 10.1109/TRO.2009.2024997 (дата обращения: 07.10.2022). - Text: electronic. DOI: 10.1109/TRO.2009.2024997(
-
Dentralized task allocation for multiple UAVs with task execution uncertainties / R. Liu [et al.] // 2020 International Conference on Unmanned Aircraft Systems (ICUAS), 2020, pp. 271-278, 10.1109/ICUAS48674.2020.9213989 (дата обращения: 07.10.2022). - Text: electronic. DOI: 10.1109/ICUAS48674.2020.9213989(
-
Mouton H. Applying Reinforcement Learning to the Weapon Assignment Problem in Air Defense / Mouton H., Roodt J., Roux H. // Scientia Militaria, South African J. of Military Studies. - 2011. - Vol. 39, № 2. - Pp. 1-15. - Text: unmediated.
-
H. Zhao. General Dynamic Neural Networks for the Adaptive Tuning of an Omni-Directional Drive System for Reactive Swarm Robotics / H. Zhao, M. Dorigo and M. Allwright // 2021 25th International Conference on Methods and Models in Automation and Robotics (MMAR), 2021, pp. 79-84, 10.1109/MMAR49549.2021.9528468 (дата обращения: 07.10.2022). - Text: electronic. DOI: 10.1109/MMAR49549.2021.9528468(
-
Mukhedkar R. Weapon Target Allocation Problem Using Fuzzy Model / Mukhedkar R., Naik S. // Intern. J. of Application or Innovation in Engineering & Management. - 2013. - Vol. 2, № 6. - Pp. 279-289. - Text: unmediated.
-
Multi-UAV Task Allocation Based on Type Mamdani Fuzzy Logic / T. Wei [et al.] // 2021 7th International Symposium on Mechatronics and Industrial Informatics (ISMII), 2021, pp. 184-187, 10.1109/ISMII52409.2021.00046 (дата обращения: 07.10.2022). - Text: electronic. DOI: 10.1109/ISMII52409.2021.00046(
-
Yuan M. An AntColony Algorithm Based on Pheromone Declining for Solving the WTA Problem / Yuan M., Ling M-X., Zeng Q-S. // Intern. J. on Computer Simulation. - 2008. - Vol. 25, № 2. - Pp. 23-25. - Text: unmediated.
-
Pheromone robotics / D. Payton [et al.] // Auton. Robot., vol. 11, no. 3, pp. 319-324, Nov. 2001. - Text: unmediated. EDN: ARTOPT
-
D. Payton. Pheromone robotics and the logic of virtual pheromones / D. Payton, R. Estkowski, and M. Howard // In Proc. 1st Int. Workshop Swarm Robotics at SAB 2004, LNCS vol. 3342. Berlin, Germany: Springer-Verlag, 2005, pp. 45-57. - Text: unmediated.
-
Analysis of the population-based ant colony optimization algorithm for the TSP and the QAP / S. Oliveira [et al.] // 2017 IEEE Congress on Evolutionary Computation (CEC), 2017, pp. 1734-1741, 10.1109/CEC.2017.7969511 (дата обращения: 07.10.2022). - Text: electronic. DOI: 10.1109/CEC.2017.7969511(
-
Ant Colony Optimization for Mixed-Variable Optimization Problems / T. Liao [et al.] // In IEEE Transactions on Evolutionary Computation, vol. 18, no. 4, pp. 503-518, Aug. 2014, 10.1109/TEVC.2013.2281531 (дата обращения: 07.10.2022). - Text: electronic. DOI: 10.1109/TEVC.2013.2281531(
-
Can ants inspire robots? / A. Brutschy [et al.] // Self-organized decision making in robotic swarms," 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp. 4272-4273, 10.1109/IROS.2012.6386273 (дата обращения: 07.10.2022). - Text: electronic. DOI: 10.1109/IROS.2012.6386273(
-
Murphy R. Target-Based Weapon Target Assignment Problems // Nonlinear Assignment Problems: Algorithms and Applications. Kluwer Academic Publishers. - 1999. - Vol. 7. - Pp. 39-53. - Text: unmediated.
-
Sikanen T. Solving Weapon Target Assignment Problem with Dynamic Programming // Independent research projects in applied mathematics. - 2008. - 32 p. - Text: unmediated.
-
J. Yu. Optimal Multirobot Path Planning on Graphs: Complete Algorithms and Effective Heuristics /j. Yu and S. M. LaValle // In IEEE Transactions on Robotics, vol. 32, no. 5, pp. 1163-1177, Oct. 2016, 10.1109/TRO.2016.2593448 (дата обращения: 07.10.2022). - Text: electronic. DOI: 10.1109/TRO.2016.2593448(
-
Multiple task assignments for cooperating uninhabited aerial vehicles using genetic algorithms / Shimaa T. [et al.] // Computers & Operations Research 33. - 2006. - Pp. 3252-3269. - Text: unmediated.
-
Decentralized Task Allocation in Multi-Agent Systems Using a Decentralized Genetic Algorithm / R. Patel [et al.] // 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 3770-3776, 10.1109/ICRA40945.2020.9197314 (дата обращения: 07.10.2022). - Text: electronic. DOI: 10.1109/ICRA40945.2020.9197314(
-
M. Soleimanpour-Moghadam. Discrete Genetic Algorithm for Solving Task Allocation of Multi-robot Systems / M. Soleimanpour-Moghadam and H. Nezamabadi-Pour // 2020 4th Conference on Swarm Intelligence and Evolutionary Computation (CSIEC), 2020, pp. 006-009, 10.1109/CSIEC49655.2020.9237316 (дата обращения: 07.10.2022). - Text: electronic. DOI: 10.1109/CSIEC49655.2020.9237316(
-
W. Husheng. A blockchain bee colony double inhibition labor division algorithm for spatio-temporal coupling task with application to UAV swarm task allocation / W. Husheng, L. Hao and X. Renbin // In Journal of Systems Engineering and Electronics, vol. 32, no. 5, pp. 1180-1199, Oct. 2021, 10.23919/JSEE.2021.000101 (дата обращения: 07.10.2022). - Text: electronic. DOI: 10.23919/JSEE.2021.000101( EDN: IHYUTF
-
Y. Msala. A new Robust Heterogeneous Multi-Robot Approach Based on Cloud for Task Allocation / Y. Msala, M. Hamlich and A. Mouchtachi // 2019 5th International Conference on Optimization and Applications (ICOA), 2019, pp. 1-4, 10.1109/ICOA.2019.8727618 (дата обращения: 07.10.2022). - Text: electronic. DOI: 10.1109/ICOA.2019.8727618(
-
Zhang J. ACGA Algorithm of Solving Weapon Target Assignment Problem / Zhang J., Wang X., Xu C. // Open J. of Applied Science. - 2012. - Vol. 2, № 4B. - Pp. 74-77. - Text: unmediated.
-
Multi-robot Task Allocation Strategy based on Particle Swarm Optimization and Greedy Algorithm / X. Kong [et al.] // 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), 2019, pp. 1643-1646, 10.1109/ITAIC.2019.8785472 (дата обращения: 07.10.2022). - Text: electronic. DOI: 10.1109/ITAIC.2019.8785472(
-
C. Wei. Particle Swarm Optimization for Cooperative Multi-Robot Task Allocation: A Multi-Objective Approach / C. Wei, Z. Ji and B. Cai in IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2530-2537, April 2020, 10.1109/LRA.2020.2972894 (дата обращения: 07.10.2022). - Text: electronic. DOI: 10.1109/LRA.2020.2972894(
-
Iterative Method of Labor Division for Multi-Robotic Systems / V. Petrenko [et al.] // Proceedings of International Conference on Artificial Life and Robotics, 2022, pp. 699-702. - Text:unmediated. EDN: YXVAZN
-
Consensus achievement method for a robotic swarm about the most frequently feature of an environment / V.I. Petrenko [et al.] // IOP Conference Series: Materials Science and Engineering, 2020, 919(4), 042025- Text: unmediated. EDN: VBOFRJ
-
Task-Allocation // GitHub URL: https://github.com/BenJoice/Task-Allocation (дата обращения: 07.10.2022). - Text: electronic.
Выпуск
Другие статьи выпуска
Статья посвящена особенностям методов синтеза управления (супервизора) для системы группового управления мобильными роботами. Верхние уровни системы группового управления рассматриваются как дискретно-событийная система. Представлены некоторые известные методы синтеза супервизора для дискретно-событийной системы, приведены оценки их вычислительной сложности. Для применения при проектировании дискретно-событийной системы группового управления выбран наилучший по критерию вычислительной сложности метод. Указаны ограничения выбранного метода, связанные с управлением независимыми действиями роботов при выполнении группового действия. Предложены модификация метода и расширение синтаксиса описания требуемого поведения (спецификации), которые позволяют снять указанные ограничения без увеличения вычислительной сложности. Применение модифицированного метода продемонстрировано на примере синтеза супервизора для группового действия выхода на рубеж с последующим тушением очага пожара тремя роботами.
Развитие технологий робототехники требует повышение уровня научно-технических разработок и создание профильного задела, а также формирования системы подготовки высококвалифицированных специалистов. Одним из способов оценки достигнутого уровня разработок и квалификации инженерных команд является проведение соревнований различного уровня. В статье представлен обзор различных мероприятий по соревновательной робототехнике. В третьей части рассмотрены соревнования в водной среде. Соревнования структурированы по формату проведения, среде функционирования и возрасту участников. Сделаны выводы о перспективах различных мероприятий соревновательной робототехники, а также актуальности некоторых из них. Представлены взаимосвязи достигаемых компетенций при участии в соревнованиях по различным направлениям, а также делается вывод о необходимости проведения профориентационной работы.
Представлен лунный манипуляторный комплекс (ЛМК), разработанный для посадочной миссии «Луна-25» в составе комплекса научной аппаратуры (КНА). В ходе наземных испытаний прежде всего отрабатывалась кинематика перемещений ЛМК, в том виде как это будет реализовано на Луне, и взаимодействие различных приборов: ЛМК, лазерный ионизационный масс-спектрометр (ЛАЗМА-ЛР), стационарная телевизионная система (СТС-Л) и ИК-спектрометр и стереокамеры (ЛИС-ТВ-РПМ). Совместная работа этой группы приборов должна обеспечить точное наведение манипулятора на выбранный участок поверхности Луны с последующим взятием пробы, безопасное транспортирование взятого грунта в приёмное отверстие масс-спектрометра и наведение ИК-спектрометра на различные объекты на поверхности Луны. Также исследовались возможности ЛМК копать и забирать пробы грунта в крио-вакуумной камере вертикального типа с использованием имитатора лунного реголита, замороженного до криогенных температур в вакууме с добавлением водяного льда.
Рассматриваются сложные робототехнические системы, их свойства, признаки и взаимодействия, предложено определение сложной системы на основе 5-ти свойств: открытости, неизоморфной изменчивости трех видов (структурной, пространственной и информационной), двойного кода, агрегирования событий и нарушения физических симметрий. Влияние нарушений физических симметрий на определение оптимальных траекторий управления сказывается в парадигме подхода к исследованиям сложных робототехнических систем, которые не формализуются как математические объекты. Сформулированы основные понятия, постулаты и гипотезы. Описаны идеальные конструкции изменчивости сложных систем; энергетических причинных множеств; энергии; событий, причин, следствий и эволюций; пространства-времени, квантов и вакуумов; взаимодействия индивидов; операторов физических взаимодействий, агрегированных событий, текстов и вложений слов. Предложены и кратко описаны три основные модели для исследования сложных систем - модель физических взаи-модействий, нейролингвистическая модель и модель управления при неполной совместимости. Приведена структура ядра платформы физического имитационного моделирования для исследований сложных систем. Описаны три типа квантов моделирования по пространству-времени - минимальный, семантический и эволюционный. Дана иллюстрация результатов применения предложенного подхода к исследованию действий сложных систем. Отмечено, что образующаяся математическая структура проявляет свойства фрактала. Выделены типовые траектории эволюции - «гомеостат»; «затухание действий»; «инвариант»; «катастрофа»; «окно возможностей». Приведен ряд принципов исследований сложных систем методологического и методического характера. Даны рекомендации по области применения предложенного подхода.
В работе рассмотрена содержательная и формальная постановки проблемы синтеза системы управления группой наземных робототехнических комплексов (РТК). Проведена декомпозиция данной проблемы на ряд частных научных задач: задачу обоснования структуры системы управления, разработку метода определения эмерджентности системы управления и разработку метода оценки качества системы управления и эффективности её применения. Показано, что отличительными чертами данной проблемы являются: стохастический характер показателя эффективности - вероятности достижения цели операции, неопределенность условий применения группы РТК и большой размер пространства проектирования системы управления. Проблема роста пространства проектирования продемонстрирована методическим примером. Для снижения трудоёмкости анализа размера пространства проектирования автором настоящей статьи предлагается использование декомпозиционного подхода, который заключается в обосновании «опорного» (базисного) варианта структуры системы управления и начальной её декомпозиции. Новизна в реализации подхода заключается в совместном рассмотрении «метода группового управления» и принципа иерархической структуризации системы группового управления. Такой подход позволяет обоснованно получить базисные решения по структуре системы управления, что, в свою очередь, позволяет осуществлять в дальнейшем параметрический синтез систем управления и проводить сравнительную оценку решений по критерию «качество-стоимость».
Перспективным направлением развития современных робототехнических систем является повышение автономности роботов. Среди различных видов автономности ситуационная автономность [2] представляет наиболее значимый вызов для разработчиков. Гибкое и устойчивое автономное функционирование робототехнических комплексов (РТК) в незнакомых, ранее не встречавшихся ситуациях обеспечивается реализацией процедур адаптации, а в пределе - самоорганизации (самообучения) в системах управления РТК. Особенно остро потребность в адаптивных системах управления проявляется при автономных действиях в боевой обстановке, где среды являются высокодинамичными, а причинами неопределенностей ситуаций могут быть непредсказуемость поведения противника, несовершенство бортовых информационно-измерительных средств и алгоритмов, сложная помеховая обстановка и др. Ситуация усугубляется групповым применением роботов, при котором человек-оператор (или их группа) в силу ограниченных психофизиологических возможностей не в состоянии координировать работу множества роботов одновременно [3]. В таких условиях РТК может оказаться бесполезным средством вооруженной борьбы, не способным частично или в полном объеме выполнить поставленную боевую задачу. Приведенные обстоятельства вызывают настоятельную необходимость создания адаптивных (самообучающихся) систем управления РТК, способных формировать рациональные, а в пределе - оптимальные с точки зрения успешного выполнения поставленной боевой задачи управленческие решения в неопределенных боевых ситуациях. В статье рассматривается один из возможных подходов к созданию самообучающихся, адаптивных в широком смысле слова систем управления РТК на основе технологий вывода решений по аналогии.
В настоящей статье представлены результаты экспериментального и расчетного моделирования движения рыбоподобного подводного робота. Экспериментальная 3D модель сконструирована по фотографиям тихоокеанского голубого тунца. Данная модель позволяет исследовать биоморфное плавание с различными параметрами движения, а именно: амплитуда и частота взмахов задается управляющим сигналом сервопривода, угол между хвостовым плавником и упругой пластиной задается количеством и жесткостью пружин в шарнире. Расчетная методика предполагает совместное решение уравнений динамики робота и уравнений гидродинамики жидкости, обтекающей его. Для данной задачи был разработан оригинальный алгоритм деформации сетки, позволяющий вести гидродинамические расчеты вблизи хвоста модели, совершающего поперечные колебания. Использование технологии деформируемых сеток позволяет максимально точно воспроизводить форму колебаний хвоста. К тому же, расчетная схема обладает свойством консервативности, что позволяет получать высокое качество расчета, подтвержденное сравнением с экспериментальными данными.
Динамичное развитие информационных технологий, и в частности, технологий искусственного интеллекта обуславливает растущую актуальность исследования возможностей их внедрения при создании перспективных образцов вооружения и военной техники. Проанализированы сущностные определения термина «искусственный интеллект». Рассмотрены типовые подходы к повышению эффективности применения вооружения и военной техники, на примере военной автомобильной техники, за счет внедрения современных технологий искусственного интеллекта. С использованием экспертных оценок сформулирован перечень основных функций ассистента водителя, при реализации которых целесообразно применение алгоритмов искусственного интеллекта.
В статье рассматривается конструкция робота Delta, входящего в состав мультироботизированной системы для аликвотирования биологической жидкости. Целью статьи является получение динамической модели манипулятора Delta при помощи 3D-моделирования, которая позволит изучать кинематические и динамические характеристики манипулятора для заданных параметров. Для моделирования используется система автоматизированного проектирования (САПР). В статье представлен аналитический расчет кинематических и динамических параметров манипулятора Delta в структуре РС, представлено решение обратной задачи. Описан процесс создания цифровой расчетной модели в системе NX Nasrtan. Предварительно выполненный расчет кинематических и динамических параметров, позволил задать параметры в системе NX Nastran для обеспечения вращения приводных валов двигателей в соответствии с заданной траекторией выходного звена. Для всех звеньев манипулятора определены центр масс и назначен материал. Проведена симуляция движения и получены зависимости изменения скоростей, ускорений и перемещений звеньев манипулятора для реализации требуемой траектории подвижной платформы. Выполнены расчет позволяет построить траекторию движения выходного звена с заданной скоростью, задавая поворот приводных звеньев расчетной модели с учетом сил инерции.
В статье на основе анализа боевых свойств и формирования предварительного перечня представительных тактико-технических характеристик активных экзоскелетов военного назначения предложен методический подход к их аналитической оценке по критерию «военно-технический уровень - стоимость» в целях реализации мероприятий программно-целевого планирования развития элементов боевой экипировки военнослужащих.
Развитие технологий робототехники требует повышение уровня научно-технических разработок и создание профильного задела, а также формирования системы подготовки высококвалифицированных специалистов. Одним из способов оценки достигнутого уровня разработок и квалификации специалистов и инженерных команд является проведение соревнований различного уровня. В статье продолжен обзор различных мероприятий по соревновательной робототехнике в части состязаний специальных и спасательных роботов в наземной и подземной средах. Соревнования структурированы по формату, типу проведения, среде функционирования и возрасту участников. Сделаны выводы о перспективах различных мероприятий соревновательной робототехники, а также актуальности некоторых из них.
Издательство
- Издательство
- ЦНИИ РТК
- Регион
- Россия, Санкт-Петербург
- Почтовый адрес
- 194064, г Санкт-Петербург, Калининский р-н, Тихорецкий пр-кт, д 21
- Юр. адрес
- 194064, г Санкт-Петербург, Калининский р-н, Тихорецкий пр-кт, д 21
- ФИО
- Лопота Александр Витальевич (ДИРЕКТОР-ГЛАВНЫЙ КОНСТРУКТОР)
- E-mail адрес
- rtc@rtc.ru
- Контактный телефон
- +7 (812) 5520110
- Сайт
- https://rtc.ru/