1. Аганин А. Д., Маневич В. А., Пересецкий А. А., Погорелова П. В. Сравнение моделей прогноза волатильности криптовалют и фондового рынка // Экономический журнал ВШЭ. 2023. № 27(1). С. 49-77. https://doi.org/10.17323/1813-8691-2023-27-1-49-77.
2. Маневич В. А., Пересецкий А. А., Погорелова П. В. Волатильность фондового рынка и волатильность криптовалют // Прикладная эконометрика. 2022. № 65. С. 65-76. https://doi.org/10.22394/1993-7601-2022-65-65-76.
3. Aalborg H.A., Molnár P., de Vries J.E. What Can Explain the Price, Volatility and Trading Volume of Bitcoin? // Finance Research Letters. 2019. No 29. P. 255-265. https://doi.org/10.1016/j.frl.2018.08.010.
4. Al Guindy M. Cryptocurrency Price Volatility and Investor Attention // International Review of Economics & Finance. 2021. No 76. P. 556-570. https://doi.org/10.1016/j.iref.2021.06.007.
5. Alipour P., Charandabi S. E. Analyzing the Interaction Between Tweet Sentiments and Price Volatility of Cryptocurrencies // European Journal of Business and Management Research. 2023. No 8(2). P. 211-215. https://doi.org/10.24018/ejbmr.2023.8.2.1865.
6. Anamika A., Subramaniam S. Do News Headlines Matter in the Cryptocurrency Market? // Applied Economics. 2022. No 54. P. 6322-6338. https://doi.org/10.1080/00036846.2022.2061904.
7. Andersen T. G., Bollerslev T. Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts // International Economic Review. 1998. No 39(4). P. 885-905. https://doi.org/10.2307/2527343.
8. Andersen T. G., Bollerslev T., Christoffersen P. F., Diebold F. X. Volatility and Correlation Forecasting // Handbook of Economic Forecasting. 2006. No 1. P. 777-878. https://doi.org/10.1016/ S1574-0706(05)01015-3.
9. Arratia A., López-Barrantes A. X. Do Google Trends Forecast Bitcoins? Stylized Facts and Statistical Evidence // Journal of Banking and Financial Technology. 2021. No 5(1). P. 45- 57. https://doi.org/10.1007/s42786-021-00027-4.
10. Aslanidis N., Bariviera A.F., López Ó.G. The Link Between Cryptocurrencies and Google Trends Attention // Finance Research Letters. 2022. No 47. Article 102654. https://doi.org/10.1016/j.frl.2021.102654.
11. Barndorff-Nielsen O. E., Shephard N. Econometric Analysis of Realized Covariation: High Frequency Based Covariance, Regression, and Correlation in Financial Economics // Econometrica. 2004. No 72(3). P. 885-925. https://doi.org/10.1111/j.1468-0262.2004.00515.x.
12. Bergsli L.Ø., Lind A.F., Molnár P., Polasik M. Forecasting Volatility of Bitcoin // Research in https://doi.org/rnationalBusinessandFinance.2022.No59.Article101540.DOI:10.1016/j.ribaf.2021.101540.
13. Bouri E., Gkillas K., Gupta R., Pierdzioch C. Forecasting Realized Volatility of Bitcoin: The Role of the Trade War // Computational Economics. 2021. No 57. P. 29-53. https://doi.org/10.1007/s10614-020-10022-4.
14. Brauneis A., Sahiner M. Crypto Volatility Forecasting: Mounting a HAR, Sentiment, and Machine Learning Horserace // Asia-Pacifi Financial Markets. 2024. 13 December. P. 1-33. https://doi.org/10.1017/s10690-024-09510-6.
15. Chen R. Forecasting Ethereum’s Volatility: An Expansive Approach Using HAR Models and Structural Breaks // Cogent Economics & Finance. 2024. No 12(1). Article 2300925. https://doi.org/10.1080/23322039.2023.2300925.
16. Chiriac R., Voev V. Modelling and Forecasting Multivariate Realized Volatility // Journal of Applied Econometrics. 2011. No 26(6). P. 922-947. https://doi.org/10.1002/jae.1152.
17. Clements A., Preve D. P. A Practical Guide to Harnessing the HAR Volatility Model // Journal of Banking & Finance. 2021. No 133. Article 106285. https://doi.org/10.1016/j.jbankfin.2021.106285.
18. Corsi F. A Simple Approximate Long-Memory Model of Realized Volatility // Journal of Financial Econometrics. 2009. No 7(2). P. 174-196. https://doi.org/10.1093/jjfinec/nbp001.
19. Dudek G., Fiszeder P., Kubus P., Orzeszko W. Forecasting Cryptocurrencies Volatility Using Statistical and Machine Learning Methods: A Comparative Study // Applied Soft Computing. 2024. No 151(2). Article 111132. https://doi.org/10.1016/j.asoc.2023.111132.
20. Dyhrberg A. H. Bitcoin, Gold and the Dollar - A GARCH Volatility Analysis // Finance Research Letters. 2016. No 16. P. 85-92. https://doi.org/10.1016/j.frl.2015.10.008.
21. Engle R.F. Autoregressive Conditional Heteroscedasticity With Estimates of the Variance of United Kingdom Inflation // Econometrica. 1982. № 54(4). P. 987-1007. https://doi.org/10.2307/1912773.
22. Engle R. F., Bollerslev T. Modelling the Persistence of Conditional Variances // Econometric Reviews. 1986. No 5(1). P. 1-50. https://doi.org/10.1080/07474938608800095.
23. Gyamerah S. A. Modelling the Volatility of Bitcoin Returns Using GARCH Models // Quantitative Finance and Economics. 2019. No 3(4). P. 739-753. https://doi.org/10.3934/ QFE.2019.4.739.
24. Hansen P. R., Lunde A., Nason J. M. The Model Confidence Set // Econometrica. 2011. No 79(2). P. 453-497. https://doi.org/10.3982/ECTA5771.
25. Harb E., Bassil C., Kassamany T., Baz R. Volatility Interdependence Between Cryptocurrencies, Equity, and Bond Markets // Computational Economics. 2024. No 63(3). P. 951-981. https://doi.org/10.1007/s10614-022-10318-7.
26. Kyriazis N., Papadamou S., Tzeremes P., Corbet S. The Differential Influence of Social Media Sentiment on Cryptocurrency Returns and Volatility During COVID-19 // The Quarterly Review of Economics and Finance. 2023. No 89. P. 307-317. https://doi.org/10.1016/j. qref.2022.09.004.
27. Liang C., Zhang Y., Li X., Ma F. Which Predictor Is More Predictive for Bitcoin Volatility? And Why? // International Journal of Finance & Economics. 2022. No 27(2). P. 1947-1961. https://doi.org/10.1002/ijfe.2252.
28. Liu L. Y., Patton A. J., Sheppard K. Does Anything Beat 5-Minute RV? A Comparison of Realized Measures Across Multiple Asset Classes // Journal of Econometrics. 2015. No 187(1). P. 293-311. https://doi.org/10.1016/j.jeconom.2015.02.008.
29. Ma F., Wei Y., Huang D., Chen Y. Which Is the Better Forecasting Model? A Comparison Between HAR-RV and Multifractality Volatility // Physica A: Statistical Mechanics and Its Applications. 2014. No 405. P. 171-180. https://doi.org/10.1016/j.physa.2014.03.007.
30. Manevich V., Ignatov D. Machine Learning, Neural Networks and Econometric Models for Prediction the Realized Volatility of Bitcoin and E-Mini S&P500. SSRN. Working Paper 4334006. 2023. https://doi.org/10.2139/ssrn.4334006.
31. Mastro D. Forecasting Realized Volatility: ARCH-Type Models vs. the HAR-RV Model. SSRN Working Paper 2519107. 2014. https://doi.org/10.2139/ssrn.2519107.
32. Nelson D. B. Asymptotic Filtering Theory for Multivariate ARCH Models // Journal of Econometrics. 1996. No 71(1-2). P. 1-47. https://doi.org/10.1016/0304-4076(94)01679-8.
33. Rabemananjara R., Zakoian J. M. Threshold ARCH Models and Asymmetries in Volatility // Journal of Applied Econometrics. 1993. No 8(1). P. 31-49. https://doi.org/10.1002/jae.3950080104.
34. Sapkota N. News-Based Sentiment and Bitcoin Volatility // International Review of Financial Analysis. 2022. No 82. Article 102183. https://doi.org/10.1016/j.irfa.2022.102183.
35. Teterin M., Peresetsky A. Google Trends and Bitcoin Volatility Forecast // Journal of the New Economic Association. 2024. No 4(65). P. 118-135. https://doi.org/10.31737/22212264_2024_4_118-135.
36. Teterin M., Peresetsky A. Can Ethereum Predict Bitcoin’s Volatility? // Applied Econometrics. 2025. No 77. P. 74-90. https://doi.org/10.22394/1993-7601-2025-77-74-90.
37. Ullah S., Attah-Boakye R., Adams K., Zaefarian G. Assessing the Influence of Celebrity and Government Endorsements on Bitcoin’s Price Volatility // Journal of Business Research. 2022. No 145. P. 228-239. https://doi.org/10.1016/j.jbusres.2022.01.055.
38. Wang Y., Andreeva G., Martin-Barragan B. Machine Learning Approaches to Forecasting Cryptocurrency Volatility: Considering Internal and External Determinants // International Review of Financial Analysis. 2023. No 90. Article 102914. https://doi.org/10.1016/j.irfa.2023.102914.