Архипелаг Шпицберген - территория с уникальным ландшафтно-геологическим и биологическим разнообразием, которое находится под угрозой деградации вследствие природной динамики температур воздуха и сокращения площади и мощности многолетнемерзлых пород. Кроме того, в настоящее время на Шпицбергене продолжается добыча полезных ископаемых (каменного угля, руд цветных металлов, углеводородов), а также из года в год возрастает объем туристического потока. Эти причины неминуемо приводят к активизации процессов трансформации местных арктических экосистем. Летом 2024 г. проведены полевые исследования почв и природных вод криогенных ландшафтов приморских низменностей на острове Западный Шпицберген в районах залива Грён-Фьорд (пос. Баренцбург) и бухты Колсбей (полярная станция Колсбей). Описаны 19 профилей почв, отнесённых к 8 различным типам. Почвы описывались в ходе полевых работ по классификации и диагностике почв России 2008 г. Заложение разрезов почв проводилось по ландшафтно-геохимическому (катенарному) принципу. В структуре почвенного покрова возвышенных геоморфологических уровней - I и II морских террас (в т. ч. частично перекрытых делювиальными шлейфами) доминируют криозёмы глееватые и петрозёмы гумусовые. Поверхность почв на этих уровнях осложнена нанополигональным криогенным микрорельефом. Почвенное разнообразие более низких геоморфологических уровней - речных пойм и низменных морских (периодически затапливаемых) аккумулятивных берегов, - представлено пелозёмами и петрозёмами, а также сульфидными солончаками, формирующимися в условиях близкого к поверхности залегания плотных пород и активного воздействия морских вод. Большая часть исследованных природных вод характеризуются невысокими значениями окислительно-восстановительного потенциала 100-250 мВ, а значения их кислотности варьируют в широких пределах от 6,5 до 9,5. Торфяно-глеезёмы, развивающиеся на низменностях при периодическом затоплении морскими водами, характеризуются наиболее щелочной реакцией среды и сочетанием отрицательных значений окислительно-восстановительного потенциала (до -3 мВ) с высокой минерализацией (в пределах 3-5 г/л). Почвы этих ландшафтов являются наиболее перспективными для изучения латеральной миграции веществ в катенах приморских криогенных ландшафтов Шпицбергена, поскольку здесь могут формироваться контрастные латеральные геохимические барьеры.
Идентификаторы и классификаторы
Территория архипелага Шпицберген – один из немногих регионов европейского сектора Арктики, где многолетнемёрзлые породы (ММП) распространены не только в высокогорьях, но и на низменных прибрежных участках, в наибольшей степени занятых растительностью и подверженных антропогенному воздействию [1].
Список литературы
1. Humlum O., Instanes A., Sollid J.L. Permafrost in Svalbard: a review of research history, climatic background and engineering challenges. Polar Research, 2003, vol. 22 (2), pp. 191-215. EDN: MDZCMZ
2. Втюрин Б.И. Подземные льды Шпицбергена // Материалы гляциологических исследований. Хроника, обсуждения, 1989. № 65. С. 69-75.
3. Втюрин Б.И. Криогенное строение рыхлых отложений Шпицбергена // Материалы гляциологических исследований. Хроника, обсуждения, 1990. № 70. С. 43-49.
4. Geologien på Svalbard (2007). S. Elvevold, W. Dallmann, D. Blomeier. Norge, Tromsø: Norsk Polarinstitutt, Polarmiljøsenteret. (Норв.). ISBN: 978-82-7666-239-9
5. Кротков В.Е., Письменюк А.А., Кизяков А.И. Территориальная дифференциация проявления криогенные процессов на Земле Норденшельда (о. Западный Шпицберген) // Рел. и четв. обр. Аркт., Субарк. и Сев.-Зап. России. 2019. Вып. 6. С. 66-70. URL:. DOI: 10.24411/2687-1092-2019-10611 EDN: AIUQRJ
6. Осокин Н.И., Сосновский А.В., Накалов П.Р. и др. Климатические изменения и возможная динамика многолетнемёрзлых грунтов на архипелаге Шпицберген // Лёд и Снег, 2012. № 2 (118). С. 115-120. EDN: PJXKWZ
7. Schirrmeister L., Siegert C., Strauß J. (2012). Permafrost ein sensibles Klimaphänomen - Begriffe, Klassifikationen und Zusmmenhänge. Polarforschung, Vol. 81 (1), pp. 3-10. (Нем.).
8. Таргульян В.О., Куликов А.В. Основные черты почв острова Западный Шпицберген // Биологические проблемы Севера. Тез. X Всесоюз. симпоз. Ч. 1. Магадан, 1983. С. 272-273.
9. Добровольский В.В. Геохимия почв Шпицбергена // Почвоведение, 1990. № 2. С. 5-20.
10. Переверзев В.Н., Литвинова Т.И. Почвы морских террас и коренных склонов на побережьях фьордов острова Западный Шпицберген // Почвоведение, 2010. № 3. С. 259-269. EDN: LOJFFP
11. Кряучюнас В.В., Игловский С.А., Шахова Е.В., Малков А.В. Тяжёлые металлы в арктических почвах западного побережья архипелага Шпицберген // Экология человека, 2014. № 9. С. 8-13. EDN: SNBBKL
12. Алексеев И.И., Абакумов Е.В. Таксономическое и морфологическое разнообразие почв окрестностей залива Гренфьорд (архипелаг Шпицберген) // Самар. Лука: пробл. регионал. и глобал. экологии, 2016. Т. 25. № 4. С. 156-161. EDN: XBWAAX
13. Кашулина Г.М., Литвинова Т.И., Коробейникова Н.М. Почвы юго-западного побережья острова Западный Шпицберген // Тр. Кол. НЦ РАН. Прикл. экология Севера, 2021. Вып. 9. Т. 12. № 6. С. 271-275. DOI: 10.37614/2307-5252.2021.6.12.9.040 EDN: GMKJAP
14. Walker D.A., Raynolds M.K., Daniels F.J.A. et al. The Circumpolar Arctic Vegetation Map // J. Veg. Sci., 2005, vol. 16, No. 3, pp. 267-282. DOI: 10.1111/j.1654-1103.2005.tb02365.x EDN: LIXTKD
15. Szymański W., Skiba S., Wojtun B. (2013). Distribution, genesis, and properties of Arctic soils: a case study from the Fuglebekken catchment, Spitsbergen. Polish Polar Research, Vol. 34, No. 3, pp. 289-304. DOI: 10.2478/popore-2013-0017 EDN: SRAYJB
16. van der Meij W.M., Temme A.J.A.M., de Kleijn C.M.F.J.J. et al. (2016). Arctic soil development on a series of marine terraces on central Spitsbergen, Svalbard: a combined geochronology, fieldwork and modelling approach. SOIL, Vol. 2, pp. 221-240. DOI: 10.5194/soil-2-221-2016 EDN: YDARBR
17. Bartos A., Szymański W., Gus-Stolarczyk M. (2023). Morphology and properties of permafrost-affected soils under different tundra vegetation in central Spitsbergen. Polish Polar Research, Vol. 44, No. 1, pp. 1-20. DOI: 10.24425/ppr.2022.143317 EDN: ERHBXN
18. Jones E.L., Hodson A.J., Thornton S.F., Redeker K.R., Rogers J., Wynn P.M., Dixon T.J., Bottrell S.H., O’Neill H.B. (2020). Biogeochemical Processes in the Active Layer and Permafrost of a High Arctic Fjord Valley. Front. Earth Sci., Vol. 8:342. DOI: 10.3389/feart.2020.00342 EDN: BLAGQA
19. Шляхов С.А. Классификация почв морских побережий. Владивосток, 1996. 35 с.
20. Черноусенко Г.И., Орешникова Н.В., Украинцева Н.Г. Засоление почв побережья северных и восточных морей России // Почвоведение, 2001. № 10. С. 1192-1206. EDN: SIWMAJ
21. Губин С.В., Лупачев А.В., Ходжаева А.К. Почвы аккумулятивных берегов морей восточного сектора Российской Арктики. Почвоведение, 2022. № 1. С. 1-8. DOI: 10.31857/S0032180X22010051 EDN: YFHHHO
22. Lupachev A.V., Gubin S.V. The soil-cryogenic complex: Evidence of late Pleistocene-Holocene coevolution of permafrost and cryosols at the Kolyma Lowland. Permafrost and Periglac. Process., 2023. Pp. 1-14. DOI: 10.1002/ppp.2191 EDN: WYXALB
23. Шур Ю.Л. Верхний горизонт толщи мёрзлых пород и термокарст. Новосибирск: Изд-во АН СССР. Сиб. отд-ние, 1988. 214 с.
24. Андреева Е.С., Липовицкая И.Н., Андреев С.С. Современные особенности погодно-климатического режима острова Западный Шпицберген и их вклад в рассеивание антропогенных примесей // Общество. Среда. Развитие, 2019. № 2. С. 68-72. EDN: JTMJVI
25. Лаврентьев И.И., Кутузов С.С., Глазовский А.Ф. и др. Толщина снежного покрова на леднике Восточный Грёнфьорд (Шпицберген) по данным радарных измерений и стандартных снегомерных съёмок // Лёд и Снег, 2018. Т. 58. № 1. С. 5-20. DOI: 10.15356/2076-6734-2018-1-5-20 EDN: YSIALY
26. Tolgensbakk, L., Sørbel, J., Høgvard K., (2000). Adventdalen, Geomorphological and Quaternary Geological map, Svalbard 1:100 000, Spitsbergen sheet C9Q. Norsk Polarinstitut Temakart rr. 32.
27. Шарин В.В., Гусев Е.А., Зыков Е.А. Карта четвертичных образований архипелага Шпицберген масштаба 1:1000 000 // Рел. и четв. образ. Аркт., Субаркт. и Сев.-Зап. России, 2022. Вып. 9. С. 291-295. DOI: 10.24412/2687-1092-2022-9-291-295 EDN: QAAFIJ
28. Bondevik S., Mangerud J, Ronnert L. et al. (1995). Postglacial sea-level history of Edgeoya and Barentsoya, eastern Svalbard. Polar Res., Vol. 14(2), pp. 153-180.
29. Geoscience Atlas of Svalbard (2015). Ed. W.K. Dallmann. Norway, Tromsø: Norsk Polarinstitutt (Norge Polar Institute), Report Series No. 148.
30. Терехов А.В. Изменчивость баланса массы ледников района Баренцбурга (архипелаг Шпицберген) в начале 21-го века / Дис. … канд. геогр. наук. СПб.: Аркт. и Антаркт. научн.-исслед. ин-т, 2024. 121 с.
31. Landvik J., Mangerund J., Salvigsen О. (1988). Glacial history and permafrost in the Svalbard area. V Intern. on Permafrost. Trondheim, Norway, pp. 194-198.
32. Оледенение Шпицбергена (Свальбарда). М.: Наука, 1975. 276 с.
33. Brown, J., Ferrians Jr., Heginbottom O.J. et al. (1997). Circum-Arctic Map of Permafrost and Ground-Ice Conditions. US Geological Survey Reston.
34. Etzemüller, B., Schuler, T.V., Isaksen, K., Christiansen, H.H., Farbrot, H., Benestad, R. (2011). Modeling the temperature evolution of Svalbard permafrost during the 20th and 21st century. Cryosphere, Vol. 5, pp. 67-79. DOI: 10.5194/tc-5-67-2011 EDN: OLHQGF
35. Harris C., Kern-Luetschg M., Christiansen H.H. et al. (2011). The Role of Interannual Climate Variability in Controlling Solifluction Processes, Endalen, Svalbard. Perm. Periglac. Proc., Vol. 22(3), pp. 239-253. DOI: 10.1002/ppp.727
36. Romanovsky, V.E., Smith, S.L., Christiansen, H.H. (2010). Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007-2009: a synthesis. Perm. Periglac. Proc., Vol. 21, pp. 106-116. EDN: NBENET
37. Демидов Н.Э., Караевская Е.С., Веркулич С.Р., Никулина А.Л., Саватюгин Л.М. Первые результаты мерзлотных наблюдений на криосферном полигоне Российского научного центра на архипелаге Шпицберген (РНЦШ) // Проблемы Арктики и Антарктики, 2016. №4 (110). С. 67-79. EDN: YJNDHD
38. База данных международной программы циркумполярного мониторинга активного слоя (CALM), данные о результатах измерений на опытных площадках в северном полушарии [Электронный ресурс]. URL: https://www2.gwu.edu/~calm/data/north.htm (дата обращения 21.09.2024).
39. A catalogue of Svalbard plants, fungi, algae and cyanobacteria. Oslo: Norsk Polarinstitutt, 1996.
40. Полевой определитель почв России. М.: Почвенный ин-т им. В.В. Докучаева, 2008. 182 с.
41. Глазовская М.А. Геохимические основы типологии и методики исследований природных ландшафтов. М.: Изд-во Моск. ун-та, 1964.
42. Богданова М.Д., Гаврилова И.П., Герасимова М.И. Элементарные ландшафты как объекты ландшафтно-геохимического картографирования // Вестн. Моск. ун-та. Сер. 5. География, 2012. № 1. С. 23-28. EDN: OWYGNZ
43. Hacquebord L. (2001). Three centuries of whaling and walrus hunting in Svalbard and its impact on the Arctic ecosystem. Environment and History, Vol. 7, No. 2, “Beyond Local, Natural Ecosystems” Sp. Iss. Pp. 169-185. DOI: 10.3197/096734001129342441 EDN: YKRPNT
44. Grønfjord (Green Harbour): Finneset. [Электронный ресурс]. URL: https://www.spitsbergen-svalbard.com/photos-panoramas-videos-and-webcams/spitsbergen-panoramas/finneset.html (дата обращения 04.10.2024).
45. Мавлюдов Б.Р., Кудинов А.В. Изменение ледника Альдегонда с начала XX века // Изв. Кол. НЦ РАН, 2018. №3 (10). С. 152-162. DOI: 10.25702/KSC.2307-5228.2018.10.3.152-164
46. Кряучюнас В.В., Игловский С.А., Любас А.А. и др. Новые данные по палеогеографии восточного побережья залива Грён-Фьорд (остров Западный Шпицберген) на основании изучения голоценовых отложений на мысе Финнисет с применением изотопно-геохимических методов // Изв. ТПУ. Инжиниринг георесурсов, 2020. Т. 331. № 1. С. 171-183. DOI: 10.18799/24131830/2020/1/2458 EDN: XILTBV
47. Rassmussen C.F., Christiansen H.H., Buylaert J.P. et al. (2023). High-resolution OSL dating of loess in Adventdalen, Svalbard: Late Holocene dust activity and permafrost development. Quatern. Sci. Rev., 310:108137. DOI: 10.1016/j.quascirev.2023.108137 EDN: IPVJLM
48. Rouyet L., Laukens T.R., Christiansen H.H. et al. (2019). Seasonal dynamics of a permafrost landscape, Adventdalen, Svalbard, investigated by InSAR. Rem. Sens. of Environ. 231:111236. DOI: 10.1016/j.rse.2019.11123 EDN: FYAZHB
Выпуск
Другие статьи выпуска
Предметом исследования является оценка современного состояния и динамика качества воды бассейнов рек Ямало-Ненецкого автономного округа за многолетний период. Особое внимание уделяется повышенному содержанию нефтепродуктов в воде рек. Подробно представлены проблемы загрязнения водных объектов региона, связанные с техногенными факторами. Рассмотрены основные источники загрязнения поверхностных вод нефтепродуктами. Продолжающееся активное промышленное освоение запасов углеводородов на территории Ямало-Ненецкого автономного округа (ЯНАО) является определяющим экономическим фактором региона, и, в свою очередь, обуславливает необходимость контроля изменения экологического состояния окружающей среды. В данной работе описаны факторы, оказывающие влияние на химический состав поверхностных вод. Рассмотрено формирование качества поверхностных вод ЯНАО в условиях близости холодного Карского моря и наличия многолетней мерзлоты, а также возрастающего антропогенного влияния. Выполнен анализ многолетней гидрохимической информации государственной сети наблюдений Росгидромета, позволяющий оценить изменение содержания нефтепродуктов в поверхностных водах Ямало-Ненецкого автономного округа за период 2014-2023 гг. Рассмотрены пространственно-временные изменения содержания нефтепродуктов в воде бассейнов рек Обь, Пур, Таз, Надым в 2014-2023 гг. Анализ динамики содержания в воде бассейнов рек ЯНАО нефтепродуктов в многолетнем плане выявил разнонаправленный уровень загрязненности воды. Повышенные концентрации нефтепродуктов в воде рек обусловлены как физико-географическими, гидрологическими и климатическими процессами, так и возрастанием уровня техногенного воздействия нефтегазодобывающих комплексов. Проведена оценка качества воды, основанная на величине удельного комбинаторного индекса загрязненности воды (УКИЗВ), позволяющего оценить уровень загрязненности воды одновременно по широкому перечню загрязняющих веществ и показателей качества. Согласно комплексной оценке, вода бассейнов рек ЯНАО по качеству стабильна: в преобладающем большинстве лет рассматриваемого периода оценивается 4-м классом качества как «грязная». Результаты исследования могут быть использованы в дальнейшем при разработке эффективных природоохранных мероприятий, направленных на улучшение качества воды рек на территории Ямало-Ненецкого автономного округа.
Предметом исследования являются едомные толщи, сложенные глинистыми грунтами: супесями и суглинками. Показано, что толщи едомного комплекса обычно сложены льдонасыщенными пылеватыми супесчано-суглинистыми грунтами. Однако часто они представлены льдонасыщенными песчаными, песчано-гравийными и даже щебнистыми грунтами. Приведено определение едомных толщ: едома - это сильнольдистые (содержащие более 50-90% льда), как правило, богатые органическим материалом (содержащие более 1-2% органики), иловатые и пылеватые супесчаные и мелкопесчаные поздненеоплейстоценовые отложения; в межгорных котловинах и на склонах едомные толщи, могут быть насыщены дресвой и щебнем, а в долинах и дельтах рек едомные толщи могут содержать гравий и галечник. Возраст едомных толщ варьируется от 12 до 50 калибр. тыс. лет и старше. Едомные отложения вмещают мощные (высотой до 15-20 м и более), нередко многоярусные - циклитно располагающиеся, сингенетические повторно-жильные льды. Едомные отложения, вскрытые обнажениями, как правило, издают специфический запах «старой конюшни» из-за разлагающейся органики. Методология исследования заключается в детальном обзоре изученных авторами и коллегами едомных толщ. Едома с крупнообломочным материалом обнаружена как севернее 80° с. ш., так и на юге в Западном Саяне и Забайкалье южнее 55° с. ш. Наиболее интересными, изученными авторами на севере России являются разрезы едомного комплекса, сложенные преимущественно глинистыми, суглинистыми и супесчаными грунтами, вскрытые в обнажениях повторно-жильного комплекса у пос. Сеяха (высота более 20 м), едомы у пос. Зеленый Мыс (высота обнажения более 40 м), Дуванный Яр (высота около 55 м), едомы Бизон (высотой до 15 м), Станчиковский Яр (высота около 35 м), Батагайский мегапровал (высота более 75 м), и в долине р. Майн. Особо подчеркнуто, что в Западной Сибири едомные толщи изучены на Ямале в Сеяхинском позднеплейстоценовом сингенетическом повторно-жильном комплексе, высотой от 22 до 24 м.
Предметом исследования является геокриологическая обстановка участка, расположенного на окраине города Норильск, вблизи зоны шлаковых отвалов Никелевого завода. Изучаемая территория представляет собой прямоугольную область размером примерно 600 на 1000 метров. Основная задача исследования состоит в оценке пространственного распределения физических свойств мерзлых пород в пределах разреза. Разрез изучается посредством геофизических методов до глубин вплоть до пятнадцати метров, а апробация данных достигается данными скважин, достигающих в среднем до глубины пятнадцати метров, причём глубина до забоя одной скважины достигает 20 метров. Полученные данные разрозненны и имеют неоднородный характер, что создаёт необходимость применения методов интерполяции для формирования непрерывных моделей распределения геофизических параметров. Рассматриваются существующие алгоритмы интерполяции, включая трёхмерный байесовский подход с настройкой радиуса поиска, количества соседей и типа ковариационной функции. Такой подход позволяет учитывать изменчивость свойств грунтов и повышать точность пространственных моделей. Таким образом, исследование направлено на адаптацию методов интерполяции для достоверного моделирования геокриологических условий. Для анализа используются геофизические и статистические методы, реализуемые в ArcGIS Pro. Интерполяция проводится с использованием байесовского эмпирического метода, после чего полученная модель изучается на предмет достоверности. Заверка выполняется сравнением с данными бурения и геоморфологического исследования. Основные выводы исследования: разработана методика, которая объединяет данные, полученные из геофизических исследований, и методы статистической обработки для моделирования свойств мерзлых пород. Это показало, что трёхмерный подход помогает лучше описывать изменчивость среды и повышать точность моделей, что подтверждается данными бурения. Так, мощность сезонно-талого слоя по геофизическим данным подтвердилась в каждой из скважин, а изменчивость прослеживается в соответсвии с геоморфологическими и литологическими особенностями территории. Произведена адаптация трёхмерного статистического метода, Байосовского кригинга 3D в частности, к условиям многолетней мерзлоты. Изучено влияние таких параметров как: тип ковариационной функции, масштаб поднаборов данных, количество соседей и радиус поиска. В рамках исследуемой территории впервые проанализирована эффективность применения эмпирического кригинга, как метода интерполяции. Полученные данные имеют прикладное значение для обоснования инфраструктурных проектов и рационального использования природных ресурсов исследуемой территории.
Изучены сингенетические композитные песчано-ледяные жилы 10, 11, 12, 13, 14 и 15, располагающиеся в толще верхнего песка Батагайского оврага, расположенном в 10 км юго-восточнее пос. Батагай. Цель работы исследовать состав ионов в сложных песчано-ледяных жилах, для установления особенностей образования композитных жил. В ионном составе композитных песчано-ледяных жил 10-15 из верхнего песка преобладают анионы сульфатов, их содержание достигает 372 мг/л, среди катионов преобладает кальций - до 148 мг/л. Велико содержание хлоридов - до 94 мг/л, соотношение анионов хлоридов к сульфатам достигает 2,7. Среди катионов выделяются кальций - до 172 мг/л и натрий до 117 мг/л. Содержание катионов магния - до 115 мг/л. Измерения выполнены с использованием ионного хроматографа «Стайер». Значения ЕС в среднем составляют в песчано-ледяных жилах: №10 - 407 мсм, №11 - 742 мсм, №12 - 583 мсм, №14 - 783 мсм, №15 - 696 мсм. Средние значения содержания катионов натрия в песчано-ледяных жилах: №10 - 22 мг/л, №11 - 63 мг/л, №12 - 28 мг/л №14 - 57 мг/л, №15 - 35 мг/л. Средние значения содержания катионов кальция в песчано-ледяных жилах: №10 - 0,42 мг/л, №11 - 89 мг/л, №12 - 63 мг/л №14 - 92 мг/л, №15 - 98 мг/л. Средние значения содержания анионов хлоридов в песчано-ледяных жилах: №10 - 23 мг/л, №11 - 48 мг/л, №12 - 41 мг/л №14 - 51 мг/л, №15 - 35 мг/л. Средние значения содержания анионов сульфатов в песчано-ледяных жилах: №10 - 27 мг/л, №11 - 104 мг/л, №12 - 105 мг/л, №14 - 128 мг/л, №15 - 64 мг/л. В целом ионный состав композитных песчано-ледяных жил существенно отличается от ионного состава ледяных жил Батагайской едомы.
В статье впервые выделены три этапа в историографии по теме заселения русскими Арктической части Якутии: дореволюционный, советский и постсоветский. В первый из них доминировала идея о переселении русских Северным морским путем из Поморья на Индигирку. Второй этап характеризуется находками останков торгово-промысловой экспедиции XVII в. на Таймыре, что доказало существование древних традиций северного судоходства. В третий период появились свидетельства о ликвидации Русскоустинского архива, труды о миграции русских Северным морским путем стали оцениваться, как «местный патриотический дискурс». Впервые использованные документы из США доказывают сложносоставной характер генезиса русских в Арктике произошел морским и сухопутным путем, а также ассимиляцией с коренными народами. Методологической основой исследования стал цивилизационный подход, поскольку генезис русских старожилов Арктики был связан с формированием их этнокультурных особенностей. В дореволюционный период на основе данных фольклора и Русскоустинского архива впервые был выдвинут вопрос о миграции русских морским путем из Поморья в Якутию. В советский период обнаружение останков торгово-промысловой экспедиции XVII в. на Таймыре свидетельствовало о существовании древних традиций судоходства в Восточной Сибири. Генезис исторических сказаний стал рассматриваться как результат тяжб из-за промысловых участков между индигирщиками и якутами. Отмечалось отсутствие архивных документов о плаваниях поморов вдоль Севморпути и говорилось о бегстве предков индигирщиков от эпидемии с юга на север. В постсоветский период маршрут миграции русских Севморпутем стал расцениваться, как не академический, а местно-патриотический дискурс, стремление повысить их социальный статус, превратив из «не вполне русских» в «самых русских». Формирование русских субэтносов произошло за счет миграционных волн Северным морским путем и казаков-землепроходцев XVII в. Определяющее значение в зарождении русских арктических старожилов Якутии сыграли коренные народы. Также впервые вводимые здесь архивные документы в США подкрепляют выводы о многовековом опыте поморских мореходов. Совокупность устных преданий, данных археологов и архивные материалы подтверждают догадку о многосоставном характере происхождения русских арктических старожилов Якутии.
Издательство
- Издательство
- НБ-МЕДИА
- Регион
- Россия, Москва
- Почтовый адрес
- 115114, г Москва, Даниловский р-н, Павелецкая наб, д 6А, кв 211
- Юр. адрес
- 115114, г Москва, Даниловский р-н, Павелецкая наб, д 6А, кв 211
- ФИО
- Даниленко Василий Иванович (ГЕНЕРАЛЬНЫЙ ДИРЕКТОР)
- Контактный телефон
- +7 (___) _______