1. Агеева Е.В., Леонова И.Н., Лихенко И.Е., Советов В.В. Масса зерна колоса и масса тысячи зерен как признаки продуктивности у сортов яровой мягкой пшеницы разных групп спелости в условиях лесостепи Приобья. Письма в Вавиловский журнал генетики и селекции. 2021;7(1):5-11. DOI: 10.18699/Letters-VJ2021-7-01 EDN: XLSVJV
Ageeva E.V., Leonova I.N., Likhenko I.E., Sovetov V.V. The ear grain weight and the thousand grain weight as productivity traits in varieties of spring bread wheat of different ripening groups in the conditions of the Priob’e steppe. Pisma v Vavilovskii Zhurnal Genetiki i Selektsii = Letters to Vavilov Journal of Genetics and Breeding. 2021;7(1):5-11. 10.18699/LettersVJ2021-7-01 (in Russian). DOI: 10.18699/LettersVJ2021-7-01(inRussian) EDN: XLSVJV
2. Агеева Е.В., Леонова И.Н., Салина Е.А., Лихенко И.Е. Изучение анатомо-морфологических признаков стебля и устойчивости к полеганию сортов яровой мягкой пшеницы (Triticum aestivum L.). Журнал Сибирского федерального университета. Серия: Биология. 2023;16(4):506-521. EDN: TCSUQF
Ageeva E.V., Leonova I.N., Salina E.A., Likhenko I.E. A study of morpho-anatomical traits and lodging resistance in spring bread wheat varieties (Triticum aestivum L.). Journal of Siberian Federal University. Biology. 2023;16(4):506-521 (in Russian). EDN: TCSUQF
3. Altpeter F., Vasil V., Srivastava V., Stöger E., Vasil I.K. Accelerated production of transgenic wheat (Triticum aestivum L.) plants. Plant Cell Rep. 1996;16(1-2):12-17. DOI: 10.1007/BF01275440
4. Altpeter F., Springer N.M., Bartley L.E., Blechl A.E., Brutnell T.P., Citovsky V., Conrad L.J., Gelvin S.B., Jackson D.P., Kausch A.P., Lemaux P.G., Medford J.I., Orozco-Cárdenas M.L., Tricoli D.M., Van Eck J., Voytas D.F., Walbot V., Wang K., Zhang Z.J., Stewart C.N. Jr. Advancing crop transformation in the era of genome editing. Plant Cell. 2016;28(7):1510-1520. DOI: 10.1105/tpc.16.00196
5. Berezhnaya A., Kiseleva A., Leonova I., Salina E. Allelic variation analysis at the vernalization response and photoperiod genes in Russian wheat varieties identified two novel alleles of Vrn-B3. Biomolecules. 2021;11(12):1897. DOI: 10.3390/biom11121897 EDN: BRPNUS
6. Chauhan H., Khurana P. Wheat genetic transformation using mature embryos as explants. Methods Mol. Biol. 2017;1679:153-167. DOI: 10.1007/978-1-4939-7337-8_10 EDN: QGKTAD
7. Chen K., Wang Y., Zhang R., Zhang H., Gao C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 2019;70:667-697. DOI: 10.1146/annurev-arplant-050718-100049 EDN: GMCCLX
8. Cheng M., Fry J.E., Pang S., Zhou H., Hironaka C.M., Duncan D.R., Conner T.W., Wan Y. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol. 1997;115(3):971-980. DOI: 10.1104/pp.115.3.971
9. Chernobrovkina M.A., Sidorov E.A., Baranov I.A. The effect of the parameters of biolistic transformation of spring barley (Hordeum vulgare L.) on the level of transient expression of GFP reporter gene. Biol. Bull. 2007;34(6):558-563. DOI: 10.1134/S1062359007060040 EDN: LKTVDZ
10. Fadeev V.S., Blinkova O.V., Gaponenko A.K. Optimization of biological and physical parameters for biolistic genetic transformation of common wheat (Triticum aestivum L.) using a particle inflow gun. Russ. J. Genet. 2006;42(4):402-411. DOI: 10.1134/S1022795406040077 EDN: LJVROR
11. Fujii Y., Kodama Y. In planta comparative analysis of improved green fluorescent proteins with reference to fluorescence intensity and bimolecular fluorescence complementation ability. Plant Biotech. 2015;32(1):81-87. DOI: 10.5511/plantbiotechnology.15.0120a EDN: UKDEAI
12. Hamada H., Linghu Q., Nagira Y. An in planta biolistic method for stable wheat transformation. Sci. Rep. 2017;7:11443. DOI: 10.1038/s41598-017-11936-0 EDN: NBXOEX
13. Ismagul A., Yang N., Maltseva E., Iskakova G., Mazonka I., Skiba Y., Bi H., Eliby S., Jatayev S., Shavrukov Y., Borisjuk N., Langridge P. A biolistic method for high-throughput production of transgenic wheat plants with single gene insertions. BMC Plant Biol. 2018;18:135. DOI: 10.1186/s12870-018-1326-1 EDN: YBMZFZ
14. Jones H.D. Wheat transformation: current technology and applications to grain development and composition. J. Cereal Sci. 2005;41(2):137-147. DOI: 10.1016/j.jcs.2004.08.009
15. Krysiak C., Mazuś B., Buchowicz J. Generation of DNA double-strand breaks and inhibition of somatic embryogenesis by tungsten microparticles in wheat. Plant Cell Tissue Organ Cult. 1999;58:163-170. :1006303331181. DOI: 10.1023/A EDN: AGMOTD
16. Lonsdale D., Onde S., Cuming A. Transient expression of exogenous DNA in intact, viable wheat embryos following particle bombardment. J. Exp. Bot. 1990;41(9):1161-1165. DOI: 10.1093/jxb/41.9.1161 EDN: IRHZMZ
17. Matveev A.V., Nartova A.V., Sankova N.N., Okunev A.G. DLgram cloud service for deep-learning analysis of microscopy images. Microsc. Res. Tech. 2024;87(5):991-998. DOI: 10.1002/jemt.24480 EDN: KLTGLG
18. Miroshnichenko D., Filippov M., Dolgov S. Genetic transformation of Russian wheat cultivars. Biotechnol. Biotechnol. Equip. 2007;21(4):399-402. DOI: 10.1080/13102818.2007.10817482 EDN: LKHBMD
19. Miroshnichenko D.N., Poroshin G.N., Dolgov S.V. Genetic transformation of wheat using mature seed tissues. Appl. Biochem. Microbiol. 2011;47:767-775. DOI: 10.1134/S0003683811080096 EDN: PEFDFH
20. Miroshnichenko D., Ashin D., Pushin A., Dolgov S. Genetic transformation of einkorn (Triticum monococcum L. ssp. monococcum L.), a diploid cultivated wheat species. BMC Biotechnol. 2018;18:68. DOI: 10.1186/s12896-018-0477-3 EDN: TLRIGV
21. Miroshnichenko D.N., Klementyeva A.A., Salina E.A., Dolgov S.V. Evaluation of in vitro plant regeneration efficiency in Siberian wheat cultivars. In: Current Challenges in Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Proceedings of the Fifth International Scientific Conference PlantGen-2019. Novosibirsk, 2019;126-128. DOI: 10.18699/ICG-PlantGen2019-40 EDN: MIKPJC
22. Miroshnichenko D., Klementyeva A., Pushin A., Dolgov S. A competence of embryo-derived tissues of tetraploid cultivated wheat species Triticum dicoccum and Triticum timopheevii for efficient and stable transgenesis mediated by particle inflow gun. BMC Plant Biol. 2020;20(Suppl. 1):442. DOI: 10.1186/s12870-020-02580-4 EDN: GZRCYF
23. Pang S.Z., DeBoer D.L., Wan Y., Ye G., Layton J.G., Neher M.K., Armstrong C.L., Fry J.E., Hinchee M.A., Fromm M.E. An improved green fluorescent protein gene as a vital marker in plants. Plant Physiol. 1996;112(3):893-900. DOI: 10.1104/pp.112.3.893
24. PDS-1000/He Biolistic Particle Delivery System Instruction Manual. [https://www.biorad.com/sites/default/files/webroot/web/pdf/lsr/literature/10000070900.pdf].
25. Rasco-Gaunt S., Riley A., Barcelo P., Lazzeri P.A. Analysis of particle bombardment parameters to optimise DNA delivery into wheat tissues. Plant Cell Rep. 1999;19:118-127. DOI: 10.1007/s002990050721 EDN: AVNGKJ
26. Rasco-Gaunt S., Riley A., Cannell M., Barcelo P., Lazzeri P.A. Procedures allowing the transformation of a range of European elite wheat (Triticum aestivum L.) varieties via particle bombardment. J. Exp. Bot. 2001;52(357):865-874. DOI: 10.1093/jexbot/52.357.865 EDN: HUUNEY
27. Russell B.C., Torralba A., Murphy K.P., Freeman W.T., LabelMe: a database and web-based tool for image annotation. Int. J. Comput. Vis. 2008;77(1-3):157-173. DOI: 10.1007/s11263-007-0090-8 EDN: NAYUNC
28. Sanford J.C., Smith F.D., Russell J.A. Optimizing the biolistic process for different biological applications. Methods Enzymol. 1993;217:483-509. DOI: 10.1016/0076-6879(93)17086-k EDN: XZEIWG
29. Souza C., Eduardo D., Fettig S., Ziegler P., Beck E. Transformation of an Argentine spring wheat genotype: optimization of the protocols for particle bombardment of excised immature embryos and rapid isolation of transgenic plants. BAG. J. Basic Appl. Genet. 2015;26(1):18-37. EDN: USARZJ
30. Sparks C.A., Doherty A. Genetic transformation of common wheat (Triticum aestivum L.) using biolistics. Methods Mol Biol. 2020;2124:229-250. DOI: 10.1007/978-1-0716-0356-7_12
31. Tian B., Navia-Urrutia M., Chen Y., Brungardt J., Trick H.N. Biolistic transformation of wheat. Methods Mol. Biol. 2018;1864:117-130. DOI: 10.1007/978-1-4939-8778-8_9
32. Vasil V., Castillo A., Fromm M., Vasil I.K. herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Nat. Biotechnol. 1992;10:667-674. DOI: 10.1038/nbt0692-667
33. Wada K. Labelme: Image Polygonal Annotation with Python [Computer software]. 2021. DOI: 10.5281/zenodo.5711226
34. Wan Y., Lemaux P.G. Generation of large numbers of independently transformed fertile barley plants. Plant Physiol. 1994;104(1):37-48. DOI: 10.1104/pp.104.1.37 EDN: NXUJXD
35. Wang Y., Zeng J., Su P., Zhao H., Li L., Xie X., Zhang Q., Wu Y., Wang R. Zhang Y., Yu B., Chen M., Wang Y., Yang G., He G., Chang J., Li Y. An established protocol for generating transgenic wheat for wheat functional genomics via particle bombardment. Front. Plant Sci. 2022;13:979540. DOI: 10.3389/fpls.2022.979540 EDN: NBIUWQ
36. Yao Q., Cong L., He G.Y., Chang J.L., Li K.X., Yang G.X. Optimization of wheat co-transformation procedure with gene cassettes resulted in an improvement in transformation frequency. Mol. Biol. Rep. 2007;34(1):61-67. DOI: 10.1007/s11033-006-9016-8 EDN: AGRGBN
37. Zhang K., Liu J., Zhang Y., Yang Z., Gao C. Biolistic genetic transformation of a wide range of Chinese elite wheat (Triticum aestivum L.) varieties. J. Genet. Genomics. 2015;42(1):39-42. DOI: 10.1016/j.jgg.2014.11.005