На основе проведенных ранее исследований по сложению сигналов BPSK после комплексного понижающего преобразования с промежуточной до нулевой частоты проведено аналогичное исследование для сигналов QPSK. Основным приложением данной работы являются средства приема информации с космических аппаратов дальнего космоса, традиционно использующие дорогостоящие антенны большого диаметра. Процесс сложения сигналов ниже уровня шумов позволяет вместо громадных антенн применять антенные поля из множества сравнительно дешевых малых антенн эквивалентной суммарной площади. Предложенный метод сложения сигналов QPSK позволил существенно снизить требуемую из соображений обеспечения когерентности отсчетов складываемых сигналов частоту дискретизации и трудоемкость цифровой обработки по сравнению с процессом сложения отсчетов сигналов BPSK при той же скорости передачи данных.
Идентификаторы и классификаторы
Задача сложения сигналов разных антенн имеет наибольшее значение при работе с космическими аппаратами (КА) дальнего космоса, когда для приема слабых сигналов требуются антенны настолько громадной площади, что их создание становится экономически нецелесообразным даже для технологически развитых стран. Поэтому вполне естественным представляется использование вместо требуемой громадной антенны достаточно большого антенного поля из сравнительно дешевых антенн меньшего диаметра с эквивалентной суммарной площадью. Однако для отсутствия затенения друг друга в пределах семиградусной зоны радиовидимости антенны наземных космических комплексов должны быть разнесены на десятки метров, т. е. минимум на 8 диаметров антенны.
Список литературы
1. Слюсар В.И. Цифровые антенные решетки в мобильной спутниковой связи // Первая миля. 2008. № 4. C. 10-15. EDN: PCYTOP
2. Волощук И.В., Королев Н.А., Никитин Н.М., Солощев О.Н., Шацман Л. Г., Алесин А.М. Развитие радиолокационных средств боевых кораблей на основе технологии цифровых антенных решеток // Збiрник наукових праць Севастопольського вiйськово-морського ордена Червоноı̈ Зiрки iнституту iм. П. С.Нахiмова. Севастополь: СВМI iм. П. С.Нахiмова, 2007. Вип. 2(12). 260 с.
3. Skolnik M. I. Radar Handbook. Third Ed. McGraw- Hill Book Company, May 11 2008. ISBN: 0-07-148547-3
4. Слюсар В. Цифровые антенные решетки: будущее радиолокации // Электроника: Наука. Технология. Бизнес. 2001. №3. C. 42-46. EDN: UXSPUN
5. Слюсар В. SMART-антенны пошли в серию // Электроника: Наука. Технология. Бизнес. 2004. T. 2. C. 62-65. EDN: UMMPGT
6. The Path to 4G Mobile.Communications Week International. 2001. Iss. 260. P. 5.
7. Слюсар В. Цифровые антенные решетки решения задач GPS // Электроника: Наука. Технология. Бизнес. 2009. T. 1 C. 74-78. EDN: OCALQL
8. Backen S., Akos D.M. Research Report “GNSS Antenna Arrays. Hardware requirements for algorithm implementation”. Lulea University of Technology. Department of Computer Science and Electrical Engineering. April 4, 2006. http://epubl.ltu.se/1402-1528/2006/13/LTU-FR-0613-SE.pdf.
9. Проблемы антенной техники / Под ред. Л.Д. Бахрака, Д.И. Воскресенского. М.: Радио и связь, 1989. 368 с.
10. Ватутин С.И., Козин П.А. Синхронное сложение сигналов антенн в комплексе телеметрических средств // Ракетно-космическое приборостроение и информационные системы. 2022. Т. 9, вып. 3. C. 36-47. EDN: CAWKOP
11. Ватутин С.И., Зайцев О.В. Применение многоканальных цифровых приемных устройств для создания антенных полей НАКУ КА. Ракетнокосмическое приборостроение и информационные технологии. 2013. VI Всероссийская научнотехническая конференция “Актуальные проблемы ракетно-космического приборостроения и информационных технологий” 5-7 июня 2013 г. М., 2014. 528 с.
12. Урличич Ю.М., Гусев Л.И., Леонов М.С., Селиванов А.С., Круглов А.В., Молотов Е.П., Ватутин В.М., Богуславская Н.Е., Молчанов К.В., Чистов Э. Г., Ржига О.Н., Зайцев А.Л., Ефимов А.И., Молотов И.Е., Дугин Н.А., Каневский Б.З. Радиотехнические комплексы для управления дальними космическими аппаратами и для научных исследований / Под ред. Е.П.Молотова. М.: ФИЗМАТЛИТ, 2007. 232 с. EDN: UGLJXZ
13. Молотов И.Е. Радиоинтерферометрия со сверхбольшими базами (РСДБ) - история, состояние и аппаратура. lfvn.astronomer.ru/report/0000007/ p0000007.htm. Сайт инициативных астрономических проектов ПулКОН и LFVN.
14. Ватутин С.И., Зайцев О.В. Патент на изобретение №2̇594385 “Способ обработки широкополосных сигналов и устройство фазирования антенн приема широкополосных сигналов, преимущественно для антенн неэквидистантной решетки”. Патентообладатель: ОАО “Российская корпорация ракетно-космического приборостроения и информационных систем” (ОАО “Российские космические системы”). Заявка №2015119423. Приоритет изобретения 25 мая 2015 г. Зарегистрировано в Государственном реестре изобретений Российской Федерации 22 июня 2016 г.
15. Ватутин С.И., Козин П.А. Метод сложения сигналов BPSK далеко разнесенных антенн с “доворотом” фаз // Ракетно-космическое приборостроение и информационные системы. 2023. Т. 10, вып. 1. C. 87-97. EDN: CERWXQ
16. Лайонс Р. Цифровая обработка сигналов. Изд. 2-е / Пер. с англ. ООО “Бином-Пресс”, 2006. 656 с.
17. Ватутин С.И., Козин П.А. Когерентное сложение сигналов BPSK разнесенных антенн при комплексном понижающем преобразовании частоты // Ракетно-космическое приборостроение и информационные системы. 2023. Т. 10, вып. 4. C. 72-81. EDN: AJOEMW
18. Considine V. Digital Complex Sampling // Electronics Letters. 1983. V. 19. August 4.
19. Рекомендация МСЭ-RBO.2098-0 (12/2016). Система передачи для спутникового радиовещания в формате ТСВЧ. Серия ВО. Спутниковое радиовещание. ITU. Международный союз электросвязи.
20. Березин Л.В., Вейцель В.А. Теория и проектирование радиосистем / Под ред. В.Н. Типугина. Учеб. пособие для вузов. М.: Сов. радио, 1977. 448 с.
21. Скляр Б. Цифровая связь. Теоретические основы и практическое применение. Изд. 2-е, испр. / Пер. с англ. М.: ИД “Вильямс”, 2007. 1104 с.
22. Грачев В.Н., Николаев В. Г. Патент на изобретение №2291558. Способ и устройство для синхронизации пространственно-временной системы реального времени. Заявка №2005102417/09, 01.02.2005.
Выпуск
Другие статьи выпуска
Представлена методика определения потребности космической промышленности в перспективных изделиях электронной компонентной базы (ЭКБ) с точки зрения анализа унифицированного компоновочного состава бортовой аппаратурыи сквозной трансляции от требований, предъявляемых к целевым характеристикам космических аппаратов, до требований, предъявляемых к элементной базе. Предлагаемый авторами подход за счет использования методов, заложенных при проектировании современных и перспективных КА и за счет концентрации только на целевых характеристиках получения и преобразования целевой информации, позволяет без снижения точности упростить состав блоков и реализовать унифицированную модель. Описанный подход позволяет на базе программной реализации определять требуемые характеристики основной ЭКБ и формировать длительные планы-графики по обеспечению импортонезависимости в перспективных КА.
Обобщен опыт работ, выполненных в АО «Российские космические системы» за период с 2005 г. по 2021 г., по разработке бортовой аппаратуры командных радиолиний космических аппаратов различного назначения с заданной вероятностью безотказной работы при различных сроках активного существования. Отмечена необходимость учета при оценках вероятности безотказной работы влияния на надежность бортовой аппаратуры в условиях космического пространства как радиационных, так и нерадиационных факторов. Рассмотрены различные схемы резервирования критичных узлов бортовой аппаратуры, а также методы учета влияния ионизирующих излучений на надежность бортовой аппаратуры.
Проведено моделирование и изготовление изделия СВЧ-техники K-диапазона (18-26 ГГц), и проведена оценка адекватности созданной модели. Исследовано влияния процессов сборки СВЧ-тракта на итоговые характеристики изготавливаемого изделия. На примере технологии SIW-фильтров продемонстрирована возможность увеличения скорости разработкиза счет уменьшения времени тестирования при использовании полученной модели для изделий космического назначения СВЧ-диапазона частот ввиду высокой сходимости данных моделирования и измерений изготовленных образцов. Предложенная авторами модель позволяет снизить ошибки при проектировании устройств СВЧ-техники космического назначения, ускорить процесс производства и снизить количество брака при сборке устройств.
В статье рассматривается применение геостационарных спутников-ретрансляторов «Луч» для управления в режиме многостанционного доступа (МСД) в S-диапазоне частот низкоорбитальными КА многоспутниковых орбитальных группировок. Приводятся методика и результаты расчета отношения энергии сигнала на бит информации к суммарной спектральной плотности мощности шума и помех ( E б N Σ ) от других КА в зависимости от числа n одновременно работающих КА-абонентов и скорости передаваемой информации. Показано, что отношение E б N Σ в радиолинии КА-абонент - СР «Луч» слабо, а в радиолинии СР «Луч» - КА-абонент сильно зависит от числа n. Существующие СР «Луч» не позволяют обеспечивать управление КА многоспутниковыми группировками. Для реализации МСД на СР вместо слабонаправленной передающей антенны необходимо устанавливать многолучевую активную антенную решетку.
В процессе работы системы управления угловым движением космического аппарата (КА) возникает потребность отключения датчиков внешней информации. Примерами могут служить системы астроориентации, гирокомпасирования, инерциальные системы, в которых, в зависимости от типа применяемых датчиков или логики построения, коррекция по внешней информации может специально прерываться (например, для «обхода» засветок Солнцем полей зрения оптических датчиков). Угловая ориентация КА при этом сразу меняется. Все, чем располагает система ориентации на момент перевода в такой автономный режим, - это сведения о предыдущих параметрах угловой коррекции и данные о движении центра масс космического аппарата. Тем не менее этих сведений оказывается достаточно для создания специального режима коррекции, экстраполирующего параметры угловой коррекции на режим автономной работы системы ориентации и позволяющего сохранить качество ориентации космического аппарата. Большое внимание уделено объяснению физической природы и характера изменения ориентации космического аппарата, показан практический пример создания специального автономного режима ориентации, приведены результаты моделирования его работы.
Определение параметров движения космических аппаратов с высокой точностью (на уровне от единиц дециметровдо сантиметров) требуется для решения целевых задач определенным классом низкоорбитальных КА. В статье рассмотрены методы получения высокоточных параметров движения низкоорбитальных КА с использованием измерений ГНСС-приемников из состава бортовой навигационной аппаратуры потребителя, способы контроля и подтверждения точности получаемых результатов. Приводится информация по достигнутой точности результатов по информации зарубежных и отечественных источникови перспективные подходы повышения точности определения параметров движения. Авторы отмечают, что совместное уточнение эфемеридно-временной информации низкоорбитальных космических аппаратов ГНСС и низкоорбитальных КА является перспективным методом повышения точности определения параметров движения и позволяет повысить точность эфемеридно-временной информации низкоорбитальных космических аппаратов ГНСС на 30-50% для плотной сети наземных приемников (100 и более наземных станций) и в 5-6 раз при использовании региональной сети наземных станций.
В статье приводится анализ существующих способов автоматизированного контроля состояния космических аппаратов (КА) по телеметрической информации (ТМИ) методами машинного обучения и дается оценка перспектив их применения в области телеконтроля состояния КА в многоспутниковых группировках. Одной из важнейших задач на всех этапах жизненного цикла космических аппаратов (КА) является анализ телеметрической информации для определения технического состояния их бортовой аппаратуры с целью заблаговременного выявленияи прогнозирования нештатных ситуаций. Существующие детермированные методы контроля состояния КА на основе мониторинга пороговых значений, анализа показателей качества, сравнения с эталонной моделью функционирования и др., с одной стороны, предполагают огромные трудозатраты на работу экспертов и формализацию логики функционирования сложного технического объекта на различных уровнях его иерархии, а с другой стороны, не обеспечивают необходимый уровень автоматизации и оперативности при контроле состояния отдельных КА в многоспутниковых группировках.
В статье предлагается подход к исследованию процесса использования результатов космической деятельности инструментами методологии функционального моделирования IDEF0 и его декомпозиция, раскрывающая особенности процесса планирования и методы исследования в области решения задачи планирования использования результатов космической деятельности. Приведено предложение по дальнейшему углубленному исследованию процесса планирования использования результатов космической деятельности и устранению недостатков, имеющихся в методологии IDEF0 с применением методологии IDEF3, позволяющей сформировать модель последовательности выполнения этапов планирования использования РКД. Применение представленного автором системного подхода к процессу планирования способно повысить эффективность, снизить затраты и оптимизировать многие процессы управления.
В работе представлены методические аспекты спектрально-энергетических и температурных калибровок оптико-электронной аппаратуры дистанционного зондирования Земли (ДЗЗ) инфракрасного диапазона. Приведены основные принципы действия инфракрасных радиометров, систематизированы термины и понятия, используемые при определении температуры объектов средствами ДЗЗ из космоса. Представлены особенности и методы дистанционного измерения температуры объектов и ее производных величин с помощью оптико-электронной аппаратуры ДЗЗ в диапазоне длин волн Δ λ = 3-14 мкм. Рассмотрены основные предельные требования к радиометру, такие как вид спектральной характеристики, линейность характеристики преобразования, шумовые характеристики, стабильность измерительных характеристик, прослеживаемость радиометрических измерений к эталонам. По каждому представленному параметру приводятся соответствующие источники литературы. Представленные авторами принципы и методы дистанционного определения температуры объектов описывают радиометрические характеристики и не затрагивают вопросов формирования изображения и его геометрических параметров.
Рассмотрена последовательность подготовки и проведения испытаний бортовой аппаратуры космических аппаратов в открытом космическом пространстве, позволяющая повысить достоверность экспериментальной отработки. Уточнен конструктивно-технологический облик стенда, включающего тестовые блоки внутри герметичного отсека орбитальной станциии крейт в открытом космическом пространстве для установки унифицированных модулей с испытуемой бортовой аппаратурой. Определены технические требования к крейту. Выполнена эскизная проработка крейта для испытаний бортовой служебной и целевой аппаратуры космических аппаратов в составе унифицированных модулей в открытом космическом пространстве. Авторы отмечают, что результаты испытаний повышают степень соответствия цифрового двойника бортовой аппаратуре. При этом снижается риск крупных финансовых потерь, связанных с возможными отказами бортовой аппаратуры в процессе летных испытаний, делающими невозможной дальнейшую полноценную штатную эксплуатацию космических аппаратов КА. Унификация этапов подготовки и проведения испытаний сокращает требуемые временные и финансовые затраты и делает их доступными для бортовой аппаратуры различного назначения.
Издательство
- Издательство
- Российские космические системы
- Регион
- Россия, Москва
- Почтовый адрес
- 111250, а/я 16, г. Москва
- Юр. адрес
- 111024, г Москва, р-н Лефортово, ул Авиамоторная, д 53
- ФИО
- Ерохин Геннадий Алексеевич (ГЕНЕРАЛЬНЫЙ ДИРЕКТОР)
- E-mail адрес
- contact@spacecorp.ru
- Контактный телефон
- +7 (749) 5673943