Рассматриваются возможности применения искусственных нейронных сетей при обработке радиолокационных данных. Выполняется обоснование возможности применения нейронной сети для измерения углового положения летательного аппарата моноимпульсным способом. Предлагается алгоритм, основанный на совместном использовании стандартного моноимпульсного способа измерения угла и нейронной сети. Проводится анализ эффективности предлагаемого алгоритма при разных значениях отношения «сигнал/шум».
Идентификаторы и классификаторы
В настоящее время искусственные нейронные сети (далее — нейронные сети) получают все большее распространение во многих сферах человеческой деятельности, в том числе в системах обработки информации. Это связано с тем, что использование нейронных сетей во многих случаях позволяет достичь высокой эффективности, гибкости и адаптивности к изменениям внешних условий и решаемых задач [1, 2]. Использование нейронных сетей особенно актуально в условиях, когда традиционные алгоритмы малоэффективны или не существуют. В последнее время нейронные сети находят применение и в задачах радиолокационной обработки сигналов [3–6].
Список литературы
1. Коул А., Ганджу С., Казам М. Искусственный интеллект и компьютерное зрение. Реальные проекты на Python, Keras и TensorFlow. СПб: Питер; 2023. 609 с.
2. Ravichandiran S. Hands-On Deep Learning Algorithms with Python: Master deep learning algorithms with extensive math by implementing them using TensorFlow. Birmingham - Mumbai: Packt Publishing; 2019. 512 p.
3. Татузов А. Л. Нейронные сети в задачах радиолокации. М.: Радиотехника; 2009. 432 с. Научная серия “Нейрокомпьютеры и их применение”, кн. 28.
4. Поддубский В. РЛС и мозг. Использование технологии нейронных сетей при обработке радиолокационной информации. Армейский сборник. 2021;(2):77-86.
5. Шестаков Н. В. Применение нейросетей для распознавания объектов по их радиолокационным спектрам. Известия Тульского государственного университета. Технические науки. 2022;(2):364-368. EDN: PNXJAS
6. Yan E., Guo X., Yang J., Meng Z., Liu K., Li X., et al. Improving Accuracy of an Amplitude Comparison-Based Direction-Finding System by Neural Network Optimization. IEEE Access. 2020;8:169688-169700. EDN: GOBNNL
7. Леонов А. И., Фомичев К. И. Моноимпульсная радиолокация. М.: Радио и связь; 1984. 312 с.
8. Sherman S. M., Barton D. K. Monopulse principles and techniques. 2nd ed. Boston, London: Artech House; 2011. 395 с.
9. Постолит А. В. Основы искусственного интеллекта в примерах на Python. Самоучитель. СПб.: БХВ-Петербург; 2021. 448 с.
10. Rojas R. Neural Networks. A Systematic Introduction. Springer; 2019. 509 p.
Выпуск
Другие статьи выпуска
Данная работа посвящена применению методов аппроксимации для моделирования беспроводных радиоканалов связи. Показана актуальность и перспективность применения беспилотных летательных аппаратов в составе летающих самоорганизующихся сетей для передачи высокоскоростной информации в условиях «умных городов». Отмечена также и проблема использования данных сетей, связанная с технической сложностью обеспечения приемлемой надежности и качества беспроводной связи, связанная с многолучевостью распространения сигналов и рядом других факторов. Показано, что в данном аспекте особую актуальность представляет развитие методов математического моделирования для анализа сигналов на входах радиоприемников БПЛА для оценки их амплитудно-фазовых преобразований каналом связи. Установлено, что связь между сигналами на передающей и приемной стороне произвольного беспроводного радиоканала связи в предположении о его линейности может однозначно определяться комплексной передаточной функцией в частотной области, которая на практике является весьма сложной и плохо поддается аналитическому описанию. В связи с этим предложен подход к ее аппроксимации эквивалентной моделью, описываемой дробно-рациональными функциями комплексного переменного, физически реализуемыми смешанными соединениями различных линейных инерционных и безынерционных звеньев, а для моделирования динамических характеристик - методика численно-аналитического моделирования на основе спектрального метода и кусочно-линейной аппроксимации. Показаны результаты применения предложенных решений.
В настоящее время для сбора данных о состоянии ресурсов агропромышленного комплекса широкое применение находят группы беспилотных летательных аппаратов, взаимодействие с которыми осуществляется путем создания беспроводных самоорганизующихся летающих сетей, связь с которыми со стороны наземных комплексов управления обеспечивается либо с помощью космических телекоммуникационных систем спутников, либо средствами одного или нескольких узлов такой сети. Непрерывное ужесточение требований к техническим характеристикам и параметрам современных беспроводных телекоммуникационных систем (особенно к повышению скорости информационного обмена и надежности связи) заставляют разработчиков искать новые подходы к проектированию их радиопередающей аппаратуры. В частности, известно, что на отношение «сигнал/шум» существенно влияет спектральная чистота сигналов, синтезируемых с помощью специальных многоканальных формирователей сигналов радиопередатчиков. Показано, что для улучшения спектральных характеристик таких формирователей можно использовать метод автоматической компенсации шумовой полосы области частот, в которой присутствуют наиболее нежелательные дискретные спектральные составляющие. На основе предложенного подхода разработана структурная и функциональная схема формирователя несущего колебания с улучшенными спектральными характеристиками, для которой получены основные математические соотношения (дифференциальные уравнения, передаточные функции, шумовые модели), на основе которых проведено соответствующее моделирование, подтверждающее эффективность использования принципа автокомпенсации.
Выполнено совместное моделировании формы поверхности сетеполотна, натянутого на силовой каркас, и статистических радиолокационных характеристик калибровочного отражателя. Для решения задачи предложена и реализована комплексная компьютерная модель, предусматривающая анализ напряженного состояния сетеполотна, формирующего поверхность раскладного сферического отражателя, численный электродинамический расчет пространственной диаграммы обратного рассеяния и оценивание статистических радиолокационных характеристик, соответствующих произвольному направлению локации в процессе наблюдения. С использованием комплексной компьютерной модели для выбранного варианта конструкции раскладного сферического отражателя рассчитана равновесная форма отражающей поверхности, разработана фацетная трехмерная электродинамическая модель, выполнен расчет пространственных диаграмм обратного рассеяния, проведено оценивание статистических радиолокационных характеристик для различных волновых размеров объекта. Представленная комплексная компьютерная модель может быть использована в исследованиях, связанных с анализом радиолокационных характеристик калибровочных раскладных сферических радиолокационных отражателей с различными вариантами конструкции силового каркаса.
В данной статье представлен неотражающий полосковый фильтр (НПФ), имеющий две полосы пропускания, соответствующих первой и третьей гармоникам принимаемого или передаваемого сигнала. НПФ состоит из связанных полосковых линий (СПЛ) и RLC-цепей, включенных в диагональные порты СПЛ. Представлено решение обратной задачи получения частотной зависимости RLC-цепей. Полученные соотношения позволяют синтезировать частотные характеристики RLC-цепи и в конечном итоге характеристики неотражающего полосно-пропускающего фильтра. Приведены экспериментальные результаты исследования однокаскадного НПФ нечетных гармоник с частотами 0,96 ГГц и 2,9 ГГц с возвратными потерями не хуже минус 10 дБ в диапазоне частот до 4,8 ГГц.
В работе проведено экспериментальное исследование частотных зависимостей коэффициентов матрицы рассеяния полосковых модулей на основе копланарной полосковой линии с частичным диэлектрическим заполнением в виде объемных нелинейно-оптических кристаллов кварца SiO2, титанил-фосфата калия KTiOPO4 (KTP), дифосфида цинка германия ZnGeP2, ниобата лития LiNbO3. Показано возникновение эффекта формирования квазихаотических колебаний в модулях, содержащих объемные кристаллы KTiOPO4, ZnGeP2, LiNbO3 при подаче на вход ЛЧМ-сигналов с быстрым переключением направления падающей волны в тракте приема-передачи векторного анализатора цепей. Введены параметры для сравнительной характеристики материалов кристаллов. Определена полная (развернутая) фаза коэффициента передачи модулей. Проведены анализ ее физического смысла и обработка полной фазы, позволившая построить алгоритм оценки частотной зависимости относительной диэлектрической проницаемости кристаллов. Исследованные модули могут выполнять функцию формирователей квазихаотических сигналов СВЧ.
Издательство
- Издательство
- УрФУ
- Регион
- Россия, Екатеринбург
- Почтовый адрес
- 620002, Свердловская область, г. Екатеринбург, ул. Мира, д. 19
- Юр. адрес
- 620002, Свердловская область, г. Екатеринбург, ул. Мира, д. 19
- ФИО
- Кокшаров Виктор Анатольевич (Ректор)
- E-mail адрес
- rector@urfu.ru
- Контактный телефон
- +7 (343) 3754507
- Сайт
- https://urfu.ru/ru