Безопасность судоходства и разработок подводных месторождений полезных ископаемых требуют точного обнаружения различных подводных объектов. В литературе рассматриваются вопросы отслеживания их перемещений и траектории движения. Предлагаются методы гидролокации, обеспечивающие высокую точность позиционирования подводных объектов. Отмечена высокая точность пеленга стереодатчиков с ультракороткой базой. Однако такое оборудование чувствительно к частоте дискретизации сигналов, что вызывает «шум дискретизации». В открытом доступе нет публикаций, посвященных решению этой проблемы. Представленное исследование призвано восполнить данный пробел. Цель работы - изучение возможности получения данных, уточняющих информацию о пеленге подводных объектов за счет использования фазовой информации отраженных зондирующих сигналов и дополнительной процедуры передискретизации исходных данных.Материалы и методы. Местоположение объекта определяли с помощью экспериментального комплекса для исследования гидроакустических датчиков, созданного В.А. Широковым и В.Н. Милич в Удмуртском федеральном исследовательском центре Уральского отделения Российской академии наук. Использовали стереодатчик с малой базой (30 мм) по сравнению с расстоянием до объекта (≈800-900 мм). Для обработки данных применяли методы цифровой фильтрации и математический аппарат корреляционного анализа отраженных гидроакустических сигналов, полученных фазовым методом.Результаты исследования. Представлены итоги сопоставления двух способов определения пеленга на объект: по разности времени прихода передних фронтов импульсов и по максимуму кросс-корреляционной функции (ККФ). Графически показано изменение пеленга при движении объекта. Использование переднего фронта сигнала обусловило небольшие выбросы значений вдоль всей кривой пеленга (менее 0,12 рад). При максимуме ККФ выбросы фиксировались лишь в некоторых областях, но были довольно значительными (около 0,17 рад). Показано, как выбрать точки, соответствующие более гладкой и валидной траектории объекта, и как работать с ошибочными точками. Представленный метод устранения ошибки можно реализовать программно. При квазигармоничном сигнале редкие измерения исходного сигнала интерполируются частыми вычисленными значениями. Благодаря такому виртуальному увеличению частоты дискретизации (передискретизации) можно фиксировать промежуточные показатели в оцифрованных исходных данных. Интерполяция значений сигнала кубическим сплайном позволила получить 20 точек на 1 период сигнала вместо 5 точек в исходном варианте. В этом случае более корректна траектория, сформированная с максимумом ККФ. Обсуждение и заключение. Задачу пеленгации можно решить с точностью, необходимой для практического применения. Учет фактора гладкости и непрерывности траектории движения объекта позволяет качественно корректировать выбор максимума кросс-корреляционной функции сигналов стереодатчика. Предложенные методы обладают большим потенциалом для разработки систем подводного видения.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.