1. Hassanli R,Youssf O, Manalo A., Najafgholipour M.A, Elchalakani M., Castillo ER, et al. An Experimental Study of the Behavior of GFRP-Reinforced Precast Concrete Culverts. Journal of Composites for Construction. 2022;26(5):04022043. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001224
2. Дорф В.А., Пергаменщик Б.К. Совершенствование технологии устройства сухой защиты шахты реактора АЭС. Вестник МГСУ. 2021;16(4):506–512. https://doi.org/10.22227/1997-0935.2021.4.506-512 Dorf VA, Pergamenchik BK. Updating of Dry Shielding of Nuclear Power Plant Reactor Vessel. Vestnik MGSU. 2022;26(5):04022043. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001224 (In Russ.).
3. Singh L, Ravaliya NR, Akbar MA. Analysis of Reinforced Concrete Structures for Accidental Blast during Launching of a Rocket. INCAS Bulletin. 2021;13(3):195–204. https://doi.org/10.13111/2066-8201.2021.13.3.16
4. Alamayreh MI, Alahmer A, Younes MB, Bazlamit SM. Pre-Cooling Concrete System in Massive Concrete Production: Energy Analysis and Refrigerant Replacement. Energies. 2022;15(3):1129. https://doi.org/10.3390/en15031129
5. Aniskin NA, Chuc NT, Khanh PK. The Use of Surface Thermal Insulation to Regulate the Temperature Regime of a Mass Concrete During Construction. Power Technology and Engineering. 2021;55:1–7. https://doi.org/10.1007/s10749-021-01310-6
6. Smolana A, Klemczak B, Azenha M, Schlike D. Early Age Cracking Risk in a Massive Concrete Foundation Slab: Comparison of Analytical and Numerical Prediction Models with On-Site Measurements. Construction and Building Materials. 2021;301:124135. https://doi.org/10.1016/j.conbuildmat.2021.124135
7. Liu J, Tian Q, Wang Y, Li H, Xu W. Evaluation Method and Mitigation Strategies for Shrinkage Cracking of Modern Concrete. Engineering. 2021;7(3):348–357. https://doi.org/10.1016/j.eng.2021.01.006
8. Zheng Z, Wei X. Mesoscopic Models and Numerical Simulations of the Temperature Field and Hydration Degree in Early-Age Concrete. Construction and Building Materials. 2021;266:121001.
https://doi.org/10.1016/j.conbuildmat.2020.121001
9. Klemczak B, Żmij A. Insight into Thermal Stress Distribution and Required Reinforcement Reducing Early-Age Cracking in Mass Foundation Slabs. Materials. 2021;14(3):477. https://doi.org/10.3390/ma14030477
10. Smolana A., Klemczak B., Azenha M., Schlike D. Experiences and Analysis of the Construction Process of Mass Foundation Slabs Aimed at Reducing the Risk of Early Age Cracks. Journal of Building Engineering. 2021;44:102947. https://doi.org/10.1016/j.jobe.2021.102947
11. Kheir J, Klausen A, Hammer TA, De Meyst L, Hilloulin B, Van Tittelboom K, et al. Early Age Autogenous Shrinkage Cracking Risk of an Ultra-High Performance Concrete (UHPC) Wall: Modelling and Experimental Results. Engineering Fracture Mechanics. 2021;257:108024. https://doi.org/10.1016/j.engfracmech.2021.108024
12. Chepurnenko A, Litvinov S, Meskhi B, Beskopylny A. Optimization of Thick-Walled Viscoelastic Hollow Polymer Cylinders by Artificial Heterogeneity Creation: Theoretical Aspects. Polymers. 2021;13(15):2408. https://doi.org/10.3390/polym13152408
13. Зоалкфл Д.А., Курачев Р.М., Чепурненко А.С. Определение температурных полей при возведении монолитных толстостенных цилиндрических оболочек. Вестник Евразийской науки. 2023;15(2):80SAVN223. URL:https://esj.today/PDF/80SAVN223.pdf (дата обращения: 1.04.2024). Zoalkfl DA, Kurachev RM, Chepurnenko AS. Determination of Temperature Fields During the Construction of Monolithic Thick-Walled Cylindrical Shells. The Eurasian Scientific Journal. 2023;15(2):80SAVN223. URL: https://esj.today/PDF/80SAVN223.pdf (accessed: 1.04.2024). (In Russ.).
14. Несветаев Г.В., Корянова Ю.И. Прогноз кинетики прочности бетона при твердении в условиях, отличных от нормальных. Современные тенденции в строительстве, градостроительстве и планировке территорий. 2023;2(4):59–68. https://doi.org/10.23947/2949-1835-2023-2-4-59-68 Nesvetaev GV, Koryanova YuI. Forecasting the Strength Gaining Kinetics of the Concrete Hardening in the Abnormal Conditions. Modern Trends in Construction, Urban and Territorial Planning. 2023;2(4):59–68.
https://doi.org/10.23947/2949-1835-2023-2-4-59-68
15. Маилян Д.Р., Несветаев Г.В. Регулирование жесткости и прочности железобетонных балок варьированием модуля упругости бетона. Вестник Томского государственного архитектурно-строительного университета. 2018;20(4):86–93. https://doi.org/10.31675/1607-1859-2018-20-4-86-93 Mailyan DR, Nesvetaev GV. Rigidity and Strength Analysis of Reinforced Concrete Beams by Varying Elasticity Modulus. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. 2018;(4):86–93. https://doi.org/10.31675/1607-1859-2018-20-4-86-93 (In Russ.).
16. Nesvetaev G, Koryanova Y, Zhilnikova T. On Effect of Superplasticizers and Mineral Additives on Shrinkage of Hardened Cement Paste and Concrete. MATEC Web of Conferences. 2018;196:04018. https://doi.org/10.1051/matecconf/201819604018