В данной статье мы исследовали динамику систем двух и трех идентичных кубитов, резонансно взаимодействующих с выделенной модой общего теплового поля резонатора без потерь. Нами найдено решение квантового временного уравнения Лиувилля для различных трех- и двухкубитных перепутанных состояний кубитов. На основе указанных решений проведено вычисление критерия перепутанности кубитов - степени совпадения. Результаты численного моделирования степени совпадения показали, что увеличение среднего числа фотонов в моде приводит к уменьшению максимальной степени перепутывания. При этом показано, что двухкубитное перепутанное состояние более устойчиво по отношению к внешнему шуму, нежели трехкубитные перепутанные состояния Гринбергера - Хорна - Цайлингера (GHZ). При этом истинно перепутанное GHZ-состояние более устойчиво к шуму, чем GHZ-подобное перепутанное состояние.
Идентификаторы и классификаторы
Перепутанные состояния в настоящее время являются основным ресурсом физики квантовых вычислений, квантовых коммуникаций и квантовой криптографии, квантовой метрологии и т. д. [1–10]. Используя различные классы перепутанных состояний, можно ускорить вычисления, обеспечить безопасность коммуникаций и преодолеть стандартные квантовые пределы при измерениях. Для многокубитных систем существуют несколько неэквивалентных классов перепутанных состояний [11–13]. В частности, для простейшего случая трехкубитной системы существуют всего два подлинно перепутанных состояния [14–19]. К последним относятся перепутанные состояния Гринбергера — Хорна — Цайлингера (GHZ-состояния) и перепутанные состояния Вернера (W-состояния). Среди всех классов перепутанных состояний GHZ-состояния являются одними из наиболее востребованных состояний для целей квантовой информатики и квантовой метрологии [20–23]. В последние годы многочастичные GHZ-состояния были реализованы для различных физических систем кубитов: ионов в ловушках [24–26], ридберговских атомов [27], фотонов [28–30], сверхпроводящих кубитов [31–33]. Указанные работы открыли новые возможности в развитии масштабируемых квантовых компьютеров, квантовой метрологии и квантовой связи. В работах [22; 23] осуществлено перепутывание до 20 кубитов с точностью (степенью совпадения) выше 0,5. Точность и технические сложности в реализации перепутанных состояний кубитов растут экспоненциально с увеличением числа кубитов.
Список литературы
1. Gu X., Kockum A.F., Miranowicz A., Liu Y.X., Nori F. Microwave photonics with superconducting quantum circuits // Physics Reports. 2017. Vols. 718-719. Pp. 1-102. DOI: 10.1016/j.physrep.2017.10.002 EDN: TECRZL
2. Wendin G. Quantum information processing with super-conducting circuits: a review // Reports on Progress in Physics. 2017. Vol. 80. Number 10. Article Number 106001. DOI: 10.1088/1361-6633/aa7e1a EDN: UJRABU
3. Kjaergaard M., Schwartz M.E., Braumuller J., Krantz P., Wang J.-I., Gustavsson S., Oliver W.D. Superconducting Qubits: Current State of Play // Annual Reviews of Condensed Matter Physics. 2020. Vol. 11. Pp. 369-395. DOI: 10.1146/annurev-conmatphys-031119-050605 EDN: ECRMZU
4. Huang H.-L., Wu D., Fan D., Zhu X. Superconducting quantum computing: a review // Science China Information Sciences. 2020. Vol. 63. Article number 180501. DOI: 10.1007/S11432-020-2881-9 EDN: CESRQR
5. Terhal B.M. Quantum error correction for quantum memories // Reviews of Modern Physics. 2015. Vol. 87, Issue 2. Pp. 307-346. DOI: 10.1103/RevModPhys.87.307
6. Kimble H.J. The quantum internet // Nature. 2008. Vol. 453. Pp. 1023-1030. DOI: 10.1038/nature07127 EDN: MJYECN
7. Pezz_e L., Smerzi A., Oberthaler M.K., Schmied R., Treutlein P. Quantum metrology with nonclassical states of atomic ensembles // Reviews of Modern Physics. 2018. Vol. 90. Article number 035005. DOI.
8. . DOI: 10.1103/RevModPhys.90.035005
9. Zou Y.-Q. [et al.] Beating the classical precision limit with spin-1 dicke states of more than 10,000 atoms // Proceedings of the National Academy of Sciences. 2018. Vol. 115. Pp. 6381-6385. DOI: 10.1073/pnas.1715105115
10. Wang X.-L. [et al.] 18-qubit entanglement with six photons’ three degrees of freedom // Physical Review Letters. 2018. Vol. 120, Issue 26. Article number 260502. DOI: 10.1103/PhysRevLett.120.260502
11. Zhong H.-S. [et al.] 12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric downconversion // Physical Review Letters. 2018. Vol. 121, Issue 25. Article number 250505. DOI: 10.1103/PhysRevLett.121.250505
12. Seevinck M., Guhne O. Separability criteria for genuine multiparticle entanglement // New Journal of Physics. 2010. Vol. 12. Article number 053002. DOI: 10.1088/1367-2630/12/5/053002
13. Pereira L., Zambrano L., Delgado A. Scalable estimation of pure multi-qubit states // Npj Quantum Information. 2022. Vol. 8. Number 57. Pp. 1-12. DOI: 10.1038/s41534-022-00565-9 EDN: YWEKKK
14. Zhahir A.A., Mohd S.M., Shuhud M.I.M., Idrus B., Zainuddin H., Jan N.M., Wahiddin M. Entanglement Quantification and Classification: A Systematic Literature Review // International Journal of Advanced Computer Science and Applications. 2022. Vol. 13, Issue 5. Pp. 218-225. DOI: 10.14569/ijacsa.2022.0130527 EDN: ZRERVH
15. Dur W., Cirac J.I. Classification of multiqubit mixed states: Separability and distillability properties // Physical Review A: Atomic, molecular, and optical physics. 2000. Vol. 61, Issue 4. Article number 042314. DOI: 10.1103/PhysRevA.61.042314
16. Dur W., Cirac J.I., Vidal G. Three qubits can be entangled in two inequivalent ways // Physical Review A: Atomic, molecular, and optical physics. 2000. Vol. 62, Issue 6. Article number 062314. DOI: 10.1103/PhysRevA.62.062314
17. Acin A., Bruβ D., Lewenstein M., Sanpera A. Classification of Mixed Three-Qubit States // Physical Review Letters. 2000. Vol. 87, Issue 4. Article number 040401. DOI: 10.1103/PhysRevLett.87.040401
18. Garcia-Alcaine G., Sabin C. A classification of entanglement in three-qubit systems // The European Physical Journal D. 2008. Vol. 48. Article number 040401. Pp. 435-442. DOI: 10.1140/epjd/e2008-00112-5 EDN: MBNVLL
19. Siti Munirah Mohd S.M., Idrus B., Zainuddin H., Mukhtar M. Entanglement Classification for a Three-qubit System using Special Unitary Groups // International Journal of Advanced Computer Science and Applications. 2019. Vol. 10, Issue 7. Pp. 374-379. DOI: 10.14569/IJACSA.2019.0100751 EDN: PLVHOX
20. Akbari-Kourbolagh Y. Entanglement criteria for the three-qubit states // International Journal of Quantum Information. 2017. Vol. 15, No. 7. Article number 1750049. DOI: 10.1142/S0219749917500496
21. Gong M. [et al.] Genuine 12-qubit entanglement on a superconducting quantum processor // Physical Review Letters. 2019. Vol. 122, Issue 11. Article number 110501. DOI: 10.1103/PhysRevLett.122.110501
22. Song C. [et al.] 10-qubit entanglement and parallel logic operations with a superconducting circuit // Physical Review Letters. 2017. Vol. 119, Issue 18. Article number 180511. DOI: 10.1103/PhysRevLett.119.180511
23. Wei K.X. [et al.] Verifying multipartite entangled GHZ states via multiple quantum coherences // Physical Review A. 2020. Vol. 101, Issue 3. Article number 032343. DOI: 10.1103/PhysRevA.101.032343 EDN: RFYCKY
24. Song C. [et al.] Generation of multicomponent atomic Schrodinger cat states of up to 20 qubits // Science. 2019. Vol. 365, Issue 6453. Pp. 574-577. DOI: 10.1126/science.aay0600
25. Leibfried D. [et al.] Toward heisenberg-limited spectroscopy with multiparticle entangled states // Science. 2004. Vol. 304, Issue 5676. Pp. 1476-1478. DOI: 10.1126/science.10975
26. Roos C.F. [et al.] Control and measurement of three-qubit entangled states // Science. 2004. Vol. 304, Issue 5676. Pp. 1478-1480. DOI: 10.1126/science.1097522
27. Monz T. [et al.] 14-qubit entanglement: creation and coherence // Physical Review Letters. 2011. Vol. 106, Issue 13. Article number 130506. DOI: 10.1103/PhysRevLett.106.130506
28. Omran A. [et al.] Generation and manipulation of Schrodinger cat states in Rydberg atom arrays // Science. 2019. Vol. 365, Issue 6453. Pp. 570-574. DOI: 10.1126/science.aax9743
29. Lu C.-Y. [et al.] Experimental entanglement of six photons in graph states // Nature Physics. 2007. Vol. 3. Pp. 91-95. DOI: 10.1038/nphys507
30. Wang X.-L. [et al.] 18-qubit entanglement with six photons’ three degrees of freedom // Physical Review Letters. 2018. Vol. 120, Issue 26. Article number 260502. DOI: 10.1103/PhysRevLett.120.260502
31. Zhong H.-S. [et al.] 12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric downconversion // Physical Review Letters. 2018. Vol. 121, Issue 25. Article number 250505. DOI: 10.1103/PhysRevLett.121.250505
32. Neeley M. Generation of three-qubit entangled states using superconducting phase qubits // Nature. 2010. Vol. 467. Pp. 570-573. DOI: 10.1038/nature09418
33. Gong M. [et al.] Genuine 12-qubit entanglement on a superconducting quantum processor // Physical Review Letters. 2019. Vol. 122, Issue 11. Article number 110501. DOI: 10.1103/PhysRevLett.122.110501
34. Song C. [et al.] 10-qubit entanglement and parallel logic operations with a superconducting circuit // Physical Review Letters. 2017. Vol. 119, Issue 18. Article number 180511. DOI: 10.1103/PhysRevLett.119.180511
35. Li D., Cheng M., Li X., Li S. A relation among tangle, 3-tangle, and von Neumann entropy of entanglement for three qubits // Quantum Information Processing. 2023. Vol. 22. Article number 14. DOI: 10.1007/s11128-022-03759-4 EDN: KWQEMA
36. Yu T., Eberly J. H. Sudden death of entanglement // Science. 2009. Vol. 323, Issue 5914. Pp. 598-601. DOI: 10.1007/s11128-022-03759-410.1126/science.1167343
37. Wang F. [et al.] Observation of entanglement sudden death and rebirth by controlling a solid-state spin bath // Physical Review B. 2018. Vol. 98, Issue 6, Article number 064306. DOI: 10.1103/PhysRevB.98.064306
38. Sun G., Zhou Z., Mao B., Wen X., Wu P., Han S. Entanglement dynamics of a superconducting phase qubit coupled to a two-level system // Physical Review B. 2012. Vol. 86, Issue 6. Article number 064502. DOI: 10.1103/PhysRevB.86.064502 EDN: RPQLUZ
39. Salles A., de Melo F., Almeida M. P., Hor-Meyll M., Walborn S.P., Souto Ribeiro P. H., Davidovich L. Experimental investigation of the dynamics of entanglement: Sudden death, complementarity, and continuous monitoring of the environment // Physical Review A. 2008. Vol. 78, Issue 2. Article number 022322. DOI: 10.1103/PhysRevA.78.022322
40. Bagrov A.R., Bashkirov E.K. Sudden death of entanglement in a thermal three-qubut Tavis-Cummings model // Proceedings of the 9th IEEE International Conference on Information Technology and Nanotechnology. 2023. Article number 23240901. DOI: 10.1109/ITNT57377.2023.10139206 EDN: WJGUAX
41. Jozsa R. Fidelity for Mixed Quantum States // Journal of Modern Optics. 1994. Vol. 41, Issue 12. Pp. 2315-2323. DOI: 10.1080/09500349414552171 EDN: XXJMFT
Выпуск
Другие статьи выпуска
В статье разработана модель нативного спектра поглощения культуры красной морской водоросли Porphyridium purpureum. Математическая модель каждого пигмента представляет сумму кривых Гаусса. Для нивелирования светорассеяния спектры культуры фиксировались на спектрофотометре с интегрирующей сферой. Для верификации модели проводилась серия параллельных измерений концентрации фотосинтетических пигментов стандартными биохимическими методиками и методом кривых Гаусса. Показано, что предлагаемая модель с достаточной точностью позволяет определить концентрацию основных фотосинтетических пигментов культуры Porphyridium purpureum, не вмешиваясь в процессы ее роста.
Найдена точная динамика модели, состоящей из двух двухуровневых атомов, взаимодействующих с модой электромагнитного поля идеального резонатора посредством вырожденных рамановских переходов, для когерентного и теплового состояний поля. Точное решение использовано для расчета атом-атомной отрицательности. Показано, что для сепарабельных начальных состояний атомов их взаимодействие с полем резонатора не приводит к возникновению атом-атомного перепутывания. Найдено, что для белловских начальных состояний атомов в случае когерентного поля резонатора имеет место эффект мгновенной смерти перепутывания для больших средних значений числа фотонов, в то время как для теплового шума указанный эффект отсутствует для любых интенсивностей резонаторного поля
В статье рассмотрено рождение J/ψ и ψ′ мезонов в рамках нерелятивистской квантовой хромодинамики и обобщенной партонной модели. Из имеющихся экспериментальных данных (√s =200 ГэВ и √s = 19.4 ГэВ) по рождению этих состояний чармония извлечены октетные непертурбативные матричные элементы и средние значения квадратов поперечных импульсов начальных партонов, которые далее использованы для предсказания сечения рождения неполяризованных чармониев и поляризации J/ψ и ψ′ при энергии √s = 27 ГэВ ускорителя NICA.
Представлен комплекс программ моделирования построения последовательности энергетических зон гетеропереходов для анализа распределения носителей зарядов в гетероструктуре и внутренних характеристик, описания процессов переноса и аккумулирования заряда. Использовались аналитическая система Wolfram Mathematica и язык программирования Delphi. Основными элементами материалов задаются полупроводники, металлы контактных структур и области инжекции неравновесных носителей. Программы позволяют определять конструктивные характеристики материалов, активных зон и областей пространственного заряда, вычислять квазиуровни Ферми и встроенные потенциалы, а также эффективность гетероструктур в целом и для разделения-сбора заряда, эмиссии высокоэнергетичных бета-электронов и генерации неравновесных носителей заряда в активной области пространственного заряда, накопления заряда, определения типов барьерных гетеропереходов и типа металлизации контактности барьерного или омического, в том числе для устройств в интегральном исполнении. Программа и результаты могут быть использованы для определения свойств полупроводниковых гетероструктур в разработках преобразователей энергии и датчиков в фото- и бетавольтаике.
Рассматривается задача о деформировании под действием равномерного давления круговой пластины, сопряженной с массивным основанием, при этом условие сопряжения пластины с основанием моделируется использованием граничных условий типа обобщенной упругой заделки, т. е. связи изгибающего момента и усилий на краю пластины со смещениями и углом поворота посредством матрицы податливости. Основной целью работы является исследование влияния упругости заделки на упругий отклик пластины. Решение задачи получено в постановке линейной теории пластин, теории мембран в приближении однородности продольных усилий и теории Феппля - фон Кармана, также в приближении предположения однородности продольных усилий. Значения коэффициентов матрицы податливости получены с помощью метода конечных элементов для вспомогательной задачи и сравнены со значениями коэффициентов, полученных для близких задач аналитическими методами. Численные результаты получены для пластины из алюминия на кремниевом основании. Проведено сравнение полученного решения с решением, полученным для условия жесткой заделки для всех трех использованных моделей. Показано, что в случае больших прогибов (несколько толщин пластины) учет податливости заделки становится существенным.
An analytical method of solving the wave equation describing the oscillations of systems with moving boundaries is considered. By changing the variables that stop the boundaries and leave the equation invariant, the original boundary value problem is reduced to a system of functional-difference equations, which can be solved using direct and inverse methods. An inverse method is described that makes it possible to approximate quite diverse laws of boundary motion by laws obtained from solving the inverse problem. New particular solutions are obtained for a fairly wide range of laws of boundary motion. A direct asymptotic method for the approximate solution of a functional equation is considered. An estimate of the errors of the approximate method was made depending on the speed of the boundary movement.
В статье рассматривается математическая модель малой ветроэнергетической установки Дарье. Данная установка представляет собой тип ветряной турбины с вертикальной осью, названной в честь ее изобретателя Жоржа Жана Мари Дарье. Конструкция представляет собой вертикально ориентированный вал с прикрепленными к нему изогнутыми лопастями или аэродинамическими профилями, образующими форму, похожую на венчик для яиц. В современном мире ветроэнергетика выступает как важнейший столп перехода к возобновляемым источникам энергии. Эта технология содействует снижению выбросов углерода и смягчению воздействия человечества на окружающую среду. В данном контексте ветроэнергетика превращается не только в средство снабжения электроэнергией, но и в мощный катализатор для построения более экологически устойчивого и энергоэффективного будущего. Исследуется уравнение стационарных режимов при значении внешнего сопротивления динамической модели, заданного простейшим уравнением. Найдены условия, при которых в системе наблюдаются релаксационные колебания.
В данной статье рассмотрен класс эллиптических уравнений второго порядка дивергентной структуры с неравномерным степенным вырождением. Подход, используемый в настоящей статье, основан на том, что скорости вырождения собственных чисел матрицы ||aij(x)|| (функции λi(x)) являются не функциями необычной нормы |x|, а некоторого анизотропного расстояния |x| a-. Предполагается, что задача Дирихле для таких уравнений разрешима в классическом смысле при любой непрерывной граничной функции в любой нормальной области Ω. Для слабых решений получены оценки вблизи граничной точки решений задачи Дирихле, функции Грина для неравномерно вырождающихся эллиптических уравнений второго порядка.
Статья посвящена памяти доктора физико-математических наук, профессора, заслуженного деятеля науки РФ Владимира Ивановича Астафьева, профессиональная деятельность которого более 35 лет связана с Самарским университетом. Научная, педагогическая и организаторская деятельность В.И. Астафьева во многом определяла и будет определять образовательную деятельность и научные направления, развиваемые на механико-математическом факультете. Его безграничная преданность университету, широкое и глубокое образование, высокая математическая культура позволили В.И. Астафьеву воспитать целую плеяду ученых и профессоров, работающих сейчас в университете.
Издательство
- Издательство
- Самарский университет
- Регион
- Россия, Самара
- Почтовый адрес
- 443086, Самара, Московское шоссе, 34,
- Юр. адрес
- 443086, Самара, Московское шоссе, 34,
- ФИО
- Богатырев Владимир Дмитриевич (Ректор)
- E-mail адрес
- rector@ssau.ru
- Контактный телефон
- +7 (846) 3351826
- Сайт
- https://www.ssau.ru/