1. Gorelov G.N., Sobolev V.A. Mathematical modeling of critical phenomena in thermal explosion theory // Combustion and Flame. 1991. Vol. 87, issue 2. P. 203-210. DOI: 10.1016/0010-2180(91)90170-G EDN: XOSLBZ
2. Gorelov G.N., Sobolev V.A. Duck-trajectories in a thermal explosion problem // Applied Mathematics Letters. 1992. Vol. 5, issue 6. P. 3-6. DOI: 10.1016/0893-9659(92)90002-Q EDN: XQRTXS
3. Соболев В.А., Щепакина Е.А. Самовоспламенение запыленных сред // Физ. горения и взрыва. 1993. Т. 29, № 3. С. 133-136. URL: item.asp?id=30074820. EDN: ZIDHUL
4. Соболев В.А., Щепакина Е.А. Траектории-утки в одной задаче теории горения // Дифференциальные уравнения. 1996. Т. 32, № 9. С. 1175-1184. URL: item.asp?id=38243989. EDN: ZTNJPF
5. Соболев В.А., Щепакина Е.А. Редукция моделей и критические явления в макрокинетике. Москва: ФИЗМАЛИТ, 2010. 320 c. URL: item.asp?id=21326259. EDN: RYRTFH
6. Shchepakina E. Unstable invariant manifolds in a control problem of the combustion process of a gas mixture // 2022 16th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy’s Conference). Moscow, Russian Federation: IEEE, 2022. P. 1-4. DOI: 10.1109/STAB54858.2022.9807573
7. Sobolev V., Shchepakina E. Critical conditions of a thermal explosion in the case of autocatalytic combustion with account reagent and oxidant consumption // 2023 16th International Conference Management of large-scale system development (MLSD). Moscow, Russian Federation: IEEE, 2023. P. 1-4,. DOI: 10.1109/MLSD58227.2023.10304029
8. Эмануэль Н.М., Кнорре Д.Г. Курс химической кинетики. Москва: Высшая школа, 1984. 463 с. URL: https://studizba.com/files/show/djvu/2958-1-n-m-emanuel-d-g-knorre-kurs.html.
9. Shchepakina E., Sobolev V., Mortell V. Singular Perturbations. Introduction to System order Reduction Methods with Applications // Springer Lecture Notes in Mathematics. 2014. Vol. 2114. P. 212. DOI: 10.1007/978-3-319-09570-7 EDN: ZIIHQZ
10. Shchepakina E. Black swans and canards in self-ignition problem // Nonlinear Analysis: Real Word Applications. 2003. Vol. 4, Issue 1. Pp. 45-50. DOI: 10.1016/S1468-1218(02)00012-3 EDN: KEQKAL
11. Shchepakina E., Sobolev V. Black swans and canards in laser and combustion models // Singular perturbations and hysteresis (Eds. M.P. Mortell, R.E. O’Malley, A. Pokrovskii, V.A. Sobolev). Philadelphia: SIAM, 2005. P. 207-255. DOI: 10.1137/1.9780898717860.ch8 EDN: WQOEHO
12. Benoit E., Callot J.L., Diener F., Diener M. Chasse au canard // Collectanea Mathematica. 1981. Vol. 31-32. P. 37-119. URL: https://www.researchgate.net/publication/265548510_Chasse_au_canard.
13. Shchepakina E., Sobolev V. Integral manifolds, canards and black swans // Nonlinear Analysis, Theory, Methods and Applications. 2001. Vol. 44, issue 7. P. 897-908. DOI: 10.1016/S0362-546X(99)00312-0 EDN: LGXHBB
14. Shchepakina E., Sobolev V. Invariant surfaces of variable stability // Journal of Physics: Conference Series. 2016. Vol. 727, № 1. P. 012016. DOI: 10.1088/1742-6596/727/1/012016 EDN: WVBECT