Агрегат для улучшения деградированных горных склоновых участков (2022)
Введение. Представлены результаты НИОКР на лабораторный образец минидискатора для работы на горных склонах, который может повысить производительность труда и продуктивность горных кормовых угодий на 15–20%.
Цель исследований – разработанный лабораторный образец блок-модуля горного навесного минидискатора для работ на участках горной и предгорной зон, позволяющий устранить засоренность почвы, повысить плодородие и урожайность кормовых угодий, обеспечить устойчивость лугов и пастбищ к дефляции и эрозии.
Методы и средства. Техническая экспертиза лабораторного образца машины проведена на горном стационаре СКНИИГПСХ ВНЦ РАН в с. Даргавс, РСО – Алания на высоте 1540 метров над уровнем моря с крутизной склона до 12°. Определены показатели условий испытаний и функциональных показателей работы агрегата. Техническая экспертиза научной документации лабораторного образца блок-модуля навесного минидискатора для обработки почв лугов и пастбищ горной зоны проводилась согласно ГОСТ 33687-2015. Предметом исследований являлись рабочие органы: диски, расстояние между смежными дисками, радиус кривизны дисков, диаметр дисков – а также конструкция установки рабочих органов на раме минидискатора.
Результаты. Разработан и изготовлен лабораторный образец минидискатора для обработки почв на участках горной и предгорной зон на базе минитрактора. Минидискатор представляет собой навесную конструкцию с однорядным расположением сферических дисков в количестве 9 штук, установленных на индивидуальных стойках.
В конструкции горного минидискатора предусмотрена способность конструкции переключаться при развороте из положения работы на склоне справа-налево в положение для работы на склоне слева-направо и возможность установки прикатывающих катков.
Выводы. Практическое применение блок-модуля минидискатора обеспечит снижение деградационных процессов склоновых участков, повысит урожайность кормовых угодий, обеспечит устойчивость к водной и ветровой эрозии, а также повысит экологическую устойчивость и эффективность лугопастбищного хозяйства
Идентификаторы и классификаторы
Известно, что земли в горной и предгорной зонах Северной Осетии обладают такими свойствами как: склоновость, повышенная влажность, мелкоконтурность земельных угодий, наличие мелких и крупных камней на поверхности и в пахотном слое. Все это является
огромным препятствием для механизированных работ в горном луговодстве и предъявляет повышенные требования как к качеству выполнения технологического процесса, так и к надежности сельскохозяйственной техники [1, 2].
Список литературы
- Милосердов В.В. Экономические механизмы хозяйствования, обеспечивающие продовольственную безопасность страны // Агропродовольственная политика России. 2017. № 12. С. 2–9.
- Солдатов Э.Д., Солдатова И.Э., Хаирбеков С.У. Состояние и рациональное использование горных лугопастбищных угодий Северного Кавказа // Горное сельское хозяйство. 2017. № 3. С. 44–49.
- Солдатова И.Э., Солдатов Э.Д. Создание высокопродуктивных сенокосов и пастбищ в горной зоне Северного Кавказа // Известия Горского государственного аграрного университета. 2017. Т. 54, № 3. С. 9–14.
- Зотов А.А., Агафонова Л.И., Шамсутдинов З.Ш., и др. Энергоэкономическая оценка естественных пастбищных экосистем России // Нетрадиционное экорастениеводство, селекция, генетика и биоземледелие. Охрана бионоосферы и космология. Философия естествознания и экообразование в триединстве экономики, экологии и здоровья: Труды XXVIII международного научного симпозиума, Алушта, 08–15 сентября. Симферополь: Форма, 2019. С. 62–73.
- Джибилов С.М., Гулуева Л.Р., Коробейник И.А. Агрегат для одновременным автоматическим подсевом трав на горные луга и пастбища Северного Кавказа // Известия
Горского государственного аграрного университета. 2018. Т. 55, № 1. С. 106–112. - Трубилин Е.И., Сохт К.А., Коновалов В.И. Повышение технологической эффективности дисковых борон // Сельский механизатор. 2013. № 3. С. 8–9.
- Джибилов С.М., Гулуева Л.Р. Многофункциональный агрегат для улучшения горных лугов и пастбищ // Известия Горского государственного аграрного университета. 2016. Т. 53, № 3.
С. 103–111. - Патент РФ на изобретение № RU 195543 U1 / Заявка № 2019135723, 2019.11.06. Сохт К.А., Коновалов В.И. Рабочий орган почвообрабатывающего орудия. Режим доступа: https://
yandex.ru/patents/doc/RU195543U1_20200130 Дата обращения: 15.12.2022. - Kudzaev A.B., Urtaev T.A., Tsgoev A.E., et al. Study of elastic composite rods for creating fuses of tilthers // International Journal of Civil Engineering and Technology. 2017. Vol. 8, N 11. Р. 658–666.
- Джибилов С.М., Гулуева Л.Р., Бестаев С.Г. Способ поверхностного улучшения горных лугов и пастбищ // Известия Горского государственного аграрного университета. 2013. Т. 50, № 1. С. 171–174.
- Патент РФ на изобретение № RU 2431248 C2 / Заявка № 2009127407/21, 2009.07.16. Джибилов С.М., Гулуева Л.Р., Габараев Ф.А., и др. Способ улучшения горных лугов
и пастбищ. Режим доступа: https://yandex.ru/patents/doc/ RU2431248C2_20111020 Дата обращения: 15.12.2022. - Патент РФ на изобретение № RU 178145 U1 / Заявка № 2017126718, 2017.07.25. Сохт К.А., Коновалов В.И. Диск сферический почвообрабатывающего орудия. Режим доступа: https:// yandex.ru/patents/doc/RU178145U1_20180326 Дата обращения: 15.12.2022.
- Трубилин Е.И., Сохт К.А., Коновалов В.И., Кравченко В.В.
Заглубляющая способность дисковых борон и лущильников // Техника и оборудование для села. 2013. № 11. С. 31–34. - Джибилов С.М., Гулуева Л.Р., Бестаев С.Г. Рыхлитель междурядий ― окучник маточных кустов в плодопитомнике // Известия Горского государственного аграрного университета. 2014. Т. 51, № 4. С. 201–207.
- Справочник конструктора сельскохозяйственных машин. В 2 т. / под ред. А.В. Красниченко. Москва: Машгиз, 1962–1964.
Выпуск
Другие статьи выпуска
2 ноября 2022 г. скончался заслуженный машиностроитель Российской Федерации, доктор технических наук, профессор Городецкий Константин Исаакович, автор ряда работ по трансмиссиям тракторов и сельхозмашин.
Константин Исаакович родился 11 января 1932 года. Закончил тракторный факультет Московского автомеханического института (МАМИ). Важным достижением Городецкого К.И. в научном плане являются предложенные им уточнения формул В.В. Мишке, позволяющих оценить изменение КПД роторных гидромашин при изменении режима их работы. Получившиеся при этом уточнении формулы называют «формулами Городецкого».
Обоснование. Наукой и практикой доказано, что кормление животных полнорационными кормосмесями позволяет повысить продуктивность. Наибольшее распространение получило приготовление рассыпных кормосмесей.
Аналитический обзор научно-исследовательских работ в области техники и технологии приготовления полнорационных кормосмесей показал преимущество применения кормосмесителей периодического действия. Это связно с тем, что ввиду циркуляции в смесителе кормовых компонентов достигается высокое качество кормосмеси. Вместе
с тем остается актуальным вопрос исследования и выбора рациональных параметров усовершенствованных идейных вариантов в направлении экономии энергоресурсных затрат.
Цель работы – совершенствование конструкции вертикального кормосмесителя периодического типа, устранение случаев задержки выгрузки готовой смеси, отрицательно влияющей на производительность и связанные с ней энергетические, трудовые и материальные затраты.
Материалы и методы. Объектом исследования является технология и конструкция кормосмесителя периодического действия. Исследуется цикловая и среднечасовая производительность смесителя. Приводятся математические выражения, описывающие зависимости времени загрузки и выгрузки из емкости смесителя. Анализируется
влияние емкости смесителя на его производительность, выраженное специальным коэффициентом. Определены пределы этого коэффициента, положительно влияющего на производительность установки.
Результаты. Установлено, что при конструктивно-технологическом совершенствовании смесителей и обеспечении правильной эксплуатации емкость не служит основным фактором, повышающим их производительность.
Заключение. Максимальная производительность смесителя вертикального кормосмесителя периодического типа в основном обеспечивается количеством циклов шнека, периодической принудительной подачи смеси, а качество перемешивания зависит от угла установки лопастного разрыхлителя.
Обоснование. Методика рационального выбора комплекта шин для сельскохозяйственного трактора является инструментом, позволяющим сравнить и выбрать комплект шин с лучшими характеристиками, анализировать особенности взаимодействия колесного движителя с почвой, оценивать целесообразность установки предлагаемого комплекта шин и выявлять пути совершенствования конструкции трактора. Актуальность выбора оптимального комплекта шин для машин, работающих в сельском хозяйстве, обусловлена уплотнением почвы ходовыми системами, ведущим к изменению ее структуры и снижению урожайности сельскохозяйственных культур, а также низкими тягово-сцепными показателями, что повышает расход топлива, снижает производительность и ускоряет износ шин при движении по мягким грунтам с буксованием колес.
Цель работы. Целью исследования является повышение эффективности работы сельскохозяйственного трактора в составе машинно-тракторного агрегата с комплектом пневматических шин, выбранных по разработанной методике. Предмет исследования – влияние конструктивных характеристик шин на эксплуатационные показатели трактора.
Материалы и методы. В работе представлена методика, позволяющая выбрать пневматические шины из широкой номенклатуры разных моделей и производителей по известным и доступным техническим характеристикам, для вновь проектируемого или модернизируемого сельскохозяйственного трактора. Отличительной особенностью
методики является получение обобщенного показателя работы трактора и сравнение по нему колесного движителя с разными шинами вместо сравнения по отдельно взятым показателям. В расчете используются пневматические шины ведущих колес разных типоразмеров и технических характеристик для колесного полноприводного трактора общего назначения. Методика включает аналитическое определение агротехнического, технического, техникоэкономического эксплуатационных показателей трактора и экономическую составляющую: максимальное давление на почву; угол поперечной статической устойчивости трактора; коэффициент буксования; стоимость комплекта шин.
П
Введение. В связи с тем, что создаваемые технические средства, в том числе и мобильные энергосредства (МЭС), применяемые в аграрной сфере, характеризуются многими критериями качества, поставленные задачи должны решаться в многокритериальной и многофакторной постановке. Поэтому создание математического и программного
обеспечения решения этих задач является актуальным.
Цель исследования. Определение оптимальных функциональных характеристик МЭС сельскохозяйственного назначения со многими критериями качества, в том числе и противоречивыми.
Методы и средства. В данном исследовании было разработано алгоритмическое и программное обеспечение многокритериальной оптимизации функциональных характеристик мобильных энергосредств сельскохозяйственного назначения. Приведены математические модели доминирующих критериев качества МЭС, функциональные
ограничения и исходные данные для решения многокритериальной оптимизационной задачи по определению характеристик МЭС на стадии проектирования и совершенствования. В качестве доминирующих критериев, согласно экспертной оценке, применялись давление на почву, производительность, энергетическая оценка по относительному снижению полных удельных топливно-энергетических затрат, суммарные затраты на техобслуживание и ремонт, энергоэффективность.
Результаты. Выполнены расчеты значений критериев качества в пробных точках испытаний – в исследуемом пространстве параметров. Согласно разработанному алгоритму определено множество допустимых решений по конструктивным и функциональным характеристикам МЭС, отвечающим всем критериальным и функциональным
ограничениям, выдвинутым лицом, принимающим решение (ЛПР). А также определено Паретовское множество решений (точек) – наилучшие варианты функциональных свойств МЭС, по совокупности критериев не уступающих друг другу. Согласно оптимизационным расчетам, ЛПР выбирает среди Паретовских точек одну единственную.
Заключение. Разработанные математические модели и на их основе составленные программные средства позволяют оптимизировать при наличии мн
Введение. В настоящее время отсутствует простой и надежный алгоритм оценки давления на почву предлагаемых на рынке комбайнов. В связи с этим актуален анализ методов, представленных в действующих стандартах и применяемых при расчетах давления ходовых органов на почву, а также выработка приемлемого для специалистов-производственников
упрощенного метода.
Цель исследований. Упрощение оценок силовых воздействий на колеса и на почву в рабочем цикле от начала до окончания заполнения бункеров зерноуборочных комбайнов.
Метод. Предложен способ оценки величины давления колес зерноуборочного комбайна на почву в рабочем цикле начала и окончания заполнения бункеров зерном, позволяющий исключить проведение развесовок комбайна с полным бункером.
Результат. В результате исследований обоснована совокупность последовательных действий по определению нагрузки движителей техники на почву, включающая определение веса и координаты расположения центра тяжести зерна в бункере с последующим нахождением реакции опор от совокупного силового воздействия зернового материала и комбайна (с пустым бункером), с учетом расположения их центров тяжести.
Заключение. Применение нового способа позволяет определить значение максимального давления колес на почву при заполненном бункере, а также диапазон изменения данного показателя от начала до завершения заполнения бункера зерном. При этом исключается взвешивание комбайна с заполненным бункером на специальной площадке с твердым покрытием с необходимостью проведения процедур по загрузке, выгрузке и взвешиванию
зерна. В результате обеспечивается возможность оперативного получения сравнительной оценки зерноуборочных комбайнов по уровню воздействия на почву применительно к началу и окончанию рабочего цикла заполнения бункера. Для решения поставленной задачи достаточно использовать имеющиеся в открытых источниках результаты
развесовок уборочной техники с пустым бункером с последующим расчетом по предлагаемому алгоритму. Установлено минимальное расхождение (менее 2%) расчетных значений максимально
Введение. Предметом исследования являются технологический процесс опрыскивания полевых сельскохозяйственных культур щелевыми распылителями жидкости и показатели дисперсности.
Цель исследований. Совершенствование технологического процесса опрыскивания растений с применением пневмогидравлических щелевых распылителей жидкости.
Методы и средства. Применялось специальное оборудование для фотографирования пленок распыляемой жидкости при различных режимах работы щелевых распылителей с возможностью расчета размеров капель. Выполнение требований по числу капель/см2 на объекте обработки, перекрытие факелов распыла жидкости обеспечивает равномерное распределение капель по ширине опрыскивания. Поэтому достаточными были сведения о дроблении толщины пленки жидкости по оси факела распыла жидкости на капли и получения их числа в единицу времени в зависимости от расхода рабочей жидкости.
Новизна исследований заключается в определении рациональной работы щелевых распылителей в составе опрыскивателя.
Результаты. С применением специального оборудования осуществляется возможность выполнения агротехнических требований по размерам капель. При применении гербицидов для лиственной послевсходовой обработки системным пестицидом пределы ММД капель составляют от 226 мкм до 400 мкм. Почвенная гербицидная обработка
системным пестицидом требует увеличенного диапазона ММД капель от 401 мкм до 500 мкм и > 500 мкм. Число капель/см2 при применении фунгицидов имеет пределы от 50 до 70, инсектицидов – от 20 до 30, а гербицидов – от 20 до 40.
Заключение. Применяемая технология позволит экономить расход препаратов и рабочей жидкости при высокой производительности проведения работ и ресурсосбережении. Приведенные выше результаты исследований могут быть положены в основу определения рациональной технологии штангового опрыскивателя со щелевыми распылителями жидкости. Выполнение требований по числу капель/см2 на объекте обработки перекрытия факелов распыла жидкости обеспечивает равномерное распределение капель по ширине опрыскивания. Поэтому
Введение. Использование сжиженного углеводородного газа (СУГ) в качестве альтернативного топлива помогает устранить ряд недостатков, связанных с составом газовоздушной смеси. Первостепенной задачей является разработка средств и методов снижения загрязнения окружающей среды, а именно направленных исследований
в области альтернативного топлива с минимальными вредными выбросами в окружающую среду, увеличение доступности данной технологии путем снижения стоимости адаптации топливной аппаратуры дизельного двигателя.
Цель. Основной целью данных исследований является обоснование параметров дизельного двигателя, работающего по газодизельному процессу с воспламенение от запальной дозы.
Методы и средства. Проведены исследования на тормозном стендовом оборудовании дизельного двигателя ММЗ Д-243. Испытаниям подвергли систему распределенной подачи СУГ с запальной дозой дизельного топлива путем автоматического изменения угла подачи газа и включением в систему рециркуляции отработавших газов во впускной коллектор. Адаптация дизельного двигателя на СУГ позволяет работать системе питания как в дизельном, так и в газодизельном режимах, при этом электронное регулирование подачи дизельного топлива в режиме «дизель» происходит более точно и способствует снижению расхода и догоранию дизельного топлива в выпускном коллекторе. Оборудование для распределенной подачи СУГ применяется стандартное, широко использующееся
для перевода бензиновых двигателей с воспламенением от искры. Взят электронный блок управления отечественного производства и настроен согласно разработанной методике управления подачей газа по цилиндрам в ФГБНУ ФНАЦ ВИМ.
Результаты. Исследования показали, что выброс загрязняющих веществ в атмосферу снизился на всех режимах работы двигателя в газодизельном режиме и соответствует евро-стандарту «Евро 5». За счет в 2,5 раза меньшей цены СУГ по сравнению с дизельным топливом затраты использования СУГ в качестве замещения дизельного топлива в режиме «газодизель» снижаются на 25–30% от себестоимости сельскохозяйственных
Введение. Проблема использования в дизелях смесевого топлива (СТ) состоит в широком варьировании их физико-химических свойств, оказывающих влияние на эмиссию оксидов азота (NOx) с отработавшими газами (ОГ). Поэтому прогнозная оценка образования NOx с ОГ при использовании СТ является весьма актуальной.
Цель исследований. В связи с этим целью исследований является прогнозная оценка количественной эмиссии NOx с ОГ дизеля при использовании различных видов и составов СТ. Научная новизна заключается в разработке методики прогнозирования эмиссии NOx дизелем при использовании СТ.
Методы и средства. Для достижения поставленной цели была разработана методика прогнозирования количественной эмиссии NOx с ОГ дизеля в зависимости от использования различных видов и составов СТ и определены их прогнозные показатели, экспериментально получены многопараметровые характеристики эмиссии NOx с ОГ ди-
зеля марки Д-245.5S2 размерностью 4ЧН 11,0/12,5 и дана оценка их степени сходимости с расчетными значениями.
Результаты. В результате проведенных исследований теоретически установлено, что с увеличением нагрузки (pe) с 0,2 до 1 МПа и уменьшением частоты вращения коленчатого вала дизеля (n) с 1800 до 1400 мин-1, а также массовой доли рапсового масла (РМ) и этанола (Э) в СТ с 40 до 20% приводит к увеличению эмиссии NOx с ОГ дизеля с 131 до 2225 млн-1 и с 75 до 1450 млн-1, соответственно. Экспериментально подтверждено увеличение эмиссии NOx с ОГ дизеля с 152 до 2125 млн-1 и с 175 до 1550 млн-1 для вышеназванных режимов работы, соответственно, для СТ, состоящего из ДТ и РМ, а также ДТ и Э.
Заключение. В результате проведенных исследований установлено, что с большей долей вероятности разработанную методику количественной эмиссии NOx с ОГ дизеля можно использовать для предварительной оценки при использовании различных видов и составов СТ, т. к. сходимость полученных экспериментальных данных с расчетными значениями методом статистической обработки и расчета ошибок эксперимента составила 90,14%.
23 декабря 2022 года в Министерстве науки и высшего образования Российской Федерации были вручены награды лауреатам премий Правительства Российской Федерации в области науки и техники за 2022 год. Премии Правительства Российской Федерации удостоена работа авторского коллектива «Разработка высокоэффективных колесных транспортно-технологических средств для ускоренного социально-экономического развития территорий
Крайнего Севера Российской Федерации». Почетное звание Лауреат премии получил целый ряд ученых ведущих научных учреждений, в том числе члены редакционной коллегии, а также постоянные авторы журнала «Тракторы и сельхозмашины».
Издательство
- Издательство
- ЭКО-ВЕКТОР
- Регион
- Россия, Санкт-Петербург
- Почтовый адрес
- 191186, г Санкт-Петербург, Центральный р-н, Аптекарский пер, д 3 литера а, помещ 1Н
- Юр. адрес
- 191186, г Санкт-Петербург, Центральный р-н, Аптекарский пер, д 3 литера а, помещ 1Н
- ФИО
- Щепин Евгений Валентинович (ГЕНЕРАЛЬНЫЙ ДИРЕКТОР)
- E-mail адрес
- e.schepin@eco-vector.com
- Контактный телефон
- +7 (812) 6488366