-
Hessel V., Lowe H., Schonfeld F. Micromixers - a review on passive and active mixing principles // Chemical Engineering Science. 2005. Vol. 60. N. 8. P. 2479-2501. DOI: 10.1016/j.ces.2004.11.033
-
Nguyen N. T. Micromixers: Fundamentals, Design, and fabrication. New York: Norwich, 2008. 368 p.
-
Farahinia A., Jamaati J., Niazmand H. Investigation of slip effects on electroosmotic mixing in heterogeneous microchannels based on entropy index // SN Applied Sciences. 2019. Vol. 1. N. 7. P. 728-740. DOI: 10.1007/s42452-019-0751-6 EDN: NYZDRW
-
Kutter J. P. Current developments in electrophoretic and chromatographic separation methods on microfabricated devices // Trends in Analytical Chemistry. 2000. Vol. 19. N. 6. P. 352-363. DOI: 10.1016/S0165-9936(00)00014-5 EDN: AFNVFP
-
Heidari R., Khosroshahi A. R., Sadri B., Esmaeilzadeh E. The electrohydrodynamic mixer for producing homogenous emulsion of dielectric liquids // Colloids and Surfaces A. 2019. Vol. 578, 123592. DOI: 10.1016/j.colsurfa.2019.123592
-
Lemoff A. V., Lee A. P. An AC magnetohydrodynamic micropump // Sensors and Actuators B: Chemical. 2000. Vol. 63. N. 3. P. 178-185. DOI: 10.1016/S0925-4005(00)00355-5 EDN: AFJQEP
-
Yang Z., Goto H., Matsumoto M., Maeda R. Active micromixer for microfluidic systems using leadzirconatetitanate (PZT)-generated ultrasonic vibration // Electrophoresis. 2000. Vol. 21. N. 1. P. 116-119. :1<116::AIDELPS116>3.0.CO;2-Y. DOI: 10.1002/(SICI)1522-2683(20000101)21
-
Alzoubi M. A., Al-Ketan O., Muthusamy J., Sasmito A. P., Poncet S. Mixing performance of Tshape micromixers equipped with 3D printed Gyroid matrices: a numerical evaluation // Results in Engineering. 2023. Vol. 17, 100811. DOI: 10.1016/j.rineng.2022.100811 EDN: BYJEHS
-
Rasheed K. et al. Parametric study on the influence of varying angled inlet channels on mixing performance in simple T micromixers and vortex T micromixers across a wide range of Reynolds numbers // Microfluidics and Nanofluidics. 2024. Vol. 28, 50. DOI: 10.1007/s10404-024-02746-8 EDN: ZGFXYZ
-
Pascal H., Jens T., Marko H., Michael S., Christian H., Patrick L., Dirk Z. Optimization of a split and recombine micromixer by improved exploitation of secondary flows // Chemical Engineering Journal. 2018. Vol. 334. P. 1996-2003. DOI: 10.1016/j.cej.2017.11.131
-
Farahinia A., Zhang W. J. Numerical analysis of a microfluidic mixer and the effects of different cross-sections and various input angles on its mixing performance // Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2020. Vol. 42. N. 4, 190. DOI: 10.1007/s40430-020-02275-9 EDN: BPKKOP
-
Mengeaud V., Josserand J., Girault H. H. Mixing processes in a zigzag microchannel: finite element simulations and optical study // Analytical Chemistry. 2002. Vol. 74. N. 15. P. 4279-4286. DOI: 10.1021/ac025642e
-
Jiang F., Drese K. S., Hardt S., Kupper M., Schonfeld F. Helical flows and chaotic mixing in curved micro channels // AIChE Journal. 2004. Vol. 50, N. 9. P. 2297-2305. DOI: 10.1002/aic.10188
-
Hossain S., Husain A., Kim K.-Y. Shape optimization of a micromixer with staggered-herringbone grooves patterned on opposite walls // Chemical Engineering Journal. 2010. Vol. 162. N. 2. P. 730-737. DOI: 10.1016/j.cej.2010.05.056 EDN: NWNIAD
-
Howell P. B., Mott D. R., Fertig S., Kaplan C. R., Golden J. P., Oran E. S., Ligler F. S. A microfluidic mixer with grooves placed on the top and bottom of the channel // Lab on a Chip. 2005. Vol. 5, N. 5. P. 524-530. DOI: 10.1039/B418243J
-
Liu R. H., Stremler M. A., Sharp K. V., Olsen M. G., Santiago J. G., Adrian R. J., Aref H., Beebe D. J. Passive mixing in a three-dimensional serpentine microchannel // Journal of Microelectromechanical Systems. 2000. Vol. 9. P. 190-197. DOI: 10.1109/84.846699
-
Hossain S., Husain A., Kim K. Y., Lin Y. Numerical characterization of simple three-dimensional chaotic micromixers // Chem. Eng. J. 2015. Vol. 277. P. 303-311. DOI: 10.1016/j.cej.2015.04.123
-
Mosheva E. A., Shmyrov A. V., Mizev A. I. Solutions mixing visualization in continuous-flow microreactors via interferometric technique // Scientific Visualization. 2023. Vol. 15, N. 3. P. 72-82. DOI: 10.26583/sv.15.3.08 EDN: EUXWYY
-
Bratsun D.A. et al. Mixing enhancement by gravity- dependent convection in a Y-shaped continuous-flow microreactor // Microgravity Science and Technology. 2022. Vol. 34. N. 5. P. 90. DOI: 10.1007/s12217-022-09994-9 EDN: WVAMTB
-
Bratsun D., Pismen L., Siraev R. On the efficiency of convective mixing in a Y-shaped channel // Journal of Physics: Conference Series. 2022. Vol. 2317. N. 1, 012022. DOI: 10.1088/1742-6596/2317/1/012022 EDN: OIZUKI
-
Никольский Б. П. Справочник химика. Т. 3. М.: Химия, 1964. 490 с.
-
Radko T. Double-diffusive convection. Cambridge: Cambridge University Press, 2013. 242 p.
-
Budroni M. A. Cross-diffusion-driven hydrodynamic instabilities in a double-layer system: General classification and nonlinear simulations // Physical Review E. 2015. Vol. 92. N. 6, 063007. DOI: 10.1103/PhysRevE.92.063007 EDN: WRGJKF
-
Young Y. N. et al. On the miscible Rayleigh-Taylor instability: two and three dimensions // Journal of Fluid Mechanics. 2001. Vol. 447. P. 377-408. DOI: 10.1017/S0022112001005870 EDN: ECMRLV
-
Chandrasekhar S. Hydrodynamic and hydromagnetic stability. Oxford: Clarendon Press, 1961. 652 p.
-
Крешков А. П. Основы аналитической химии. Физико-химические (инструментальные) метода анализа. Кн. 3. М.: Химия, 1970.
-
Красноперов Я. И., Скляренко М. С. Экспериментальная зависимость скорости массопереноса красителя в плоском горизонтальном слое воды от его толщины // Научно-технические ведомости СПбГПУ. Физико-математические науки. 2012. Т. 158. № 4. С. 85-91. EDN: QAGDAJ
-
Alipour M., De Paoli M., Soldati A. Concentrationbased velocity reconstruction in convective Hele-Shaw flows // Experiments in Fluids. 2020. Vol. 61. P. 1-16. DOI: 10.1007/S00348-020-03016-3 EDN: TCFYNO
-
Nimafar M. Study and development of new passive micromixers based on split and recombination principle. PhD Thesis. Politecnico di Torino, 2013. 162 p.
-
Salinas C. Experimental investigation on carbon dioxide dissolution in saline aquifers. Master's thesis. Technische Universität Wien, 2018. 73 p.