Мощные квантово-каскадные лазеры для спектрального диапазона 8 мкм Владислав Дюделев

ДюделевВ.В.¹, Черотченко Е.Д.¹, Врубельь И.И.¹, Д.А. Михайлов¹, Чистяков Д.В.¹, Мыльников В.Ю.¹, Лосев С.Н.¹, Когновитская Е.А.¹, Лютетский А.В.¹, Слипченко С.О.¹, Гладышев А.Г.², Подгаетский К.А.³, Бабичев А.В.⁴, Папылев Д.С.⁴, Андреев А.Ю.³, Яроцкая И.В.³, Ладугин М.А.³, Мармалюк А.А.³, Новиков И.И.^{2,4}, Кучинский В.И.¹, Карачинский Л.Я.^{2,4}, Пихтин Н.А.¹, Егоров А.Ю.², Соколовский Г.С.¹.

> ^aIoffe Institute, Saint-Petersburg, Russia ^bConnector Optics LLC, Saint-Petersburg, Russia ^cJSC MF Stelmakh Polyus Res Inst, Moscow, Russia ^dITMO University, Saint-Petersburg, Russia

Motivation

Agriculture and forestry In–field monitoring Crop storage control

Environmental monitoring Waste management and recycling Air / Water pollution Greenhouse gases Pipeline control

Transports Vehicle emission monitoring Fuel control Engine design Safety control

Healthcare Blood analysis Breath analysis Infection detection In vivo imaging

Consumer In-door air monitoring Food analysis & testing

Tele- and data-communication Vehicle communication Metropolitan area Satellite

Defense & Security Biological and chemical agents Human presence / intrusion Infrared counter–measures Drugs detection

2

Motivation 2/2: FSO communication

[Lavery et al., Sci. Adv. 3(10) e1700552 (2017)]

Alpes Lasers SA (Switzerland) Mirsense (France) Pranalytica Inc. (USA) Adtech Optics (USA) Block Engineering Inc. (USA) Wavelength Electronics Inc. (USA) Akela Laser Corporation (USA) Nanoplus Nanosyst. & Tech. GmbH (Germany) Hamamatsu Photonics K.K. (Japan) Thorlabs Inc. (USA)

Outline Motivation & brief history ≻ High-power QCLs @ 8 μm **Upper cladding optimization** ≻High-power QCLs @ 8 µm Strained vs Lattice-matched > Active region overheating ➢ Conclusion 100

Mid-IR QCLs: 3 Decades

5

W. Zhou et al., Opt. Exp., 27, 15776, 2019

QCL structure $\lambda = 8 \mu m$

Active region:

Structure:

- Two-phonon resonance scattering
- Lattice-matched heterostructure In_{0.53}Ga_{0.47}As/In_{0.52}Al_{0.48}As

Upper level lifetime: $\tau_{upp} = 2.32 \text{ ps}$ Radiating transition time: $\tau_{up-low} = 5.8 \text{ ps}$ Lower level lifetime: $\tau_{low} = 0.30 \text{ ps}$ Matrix element: $|\mathbf{M}|^2_{up-low} = 6.45 \text{ nm}^2$

Figure of merit (FOM): $|M|^2_{up low} \cdot \tau_{up} \cdot (1 - \tau_{low} / \tau_{up-low})$ FOM = 14 ps nm²

In_{0.53}Ga_{0.47}As / Al_{0.48}In_{0.52}As 50x: **2.4**/2.4/**2.6**/2.1/**2.6**/1.8/**2.7**/1.6/**2.9**/1.7/ /**3.1**//2.5/**4.4**/1.2/**5.2**/1.2/**5.3**/1.0/**1.7**/4.3

[A.V. Babichev et al. / Tech. Phys. Lett. 43(7) 666 (2017)]

QCL efficiency vs cladding doping

Structure a	Composition	Thickness, nm	Doping, cm ⁻³
Contact layer	InP	200	1x10 ¹⁸
Upper cladding	InP	40 <mark>00</mark>	1x10 ¹⁷
Structure b			
Contact layer	In _{0.53} Ga _{0.47} As	200	1x10 ¹⁹
Upper cladding	InP	2000	Gradient $1x10^{16} \div 1x10^{18}$
Upper cladding	InP	2000	1×10^{16}
Structure c			
Contact layer	In _{0.53} Ga _{0.47} As	200	1x10 ¹⁹
Upper cladding	InP	4000	1×10^{17}

Growth: MOCVD, JSC Polyus (Moscow, Russia)

QCL efficiency vs cladding doping

9

Strain-balanced QCL structure $\lambda = 8 \mu m$

Structure:

- Two-phonon resonance scattering
- Strained heterostructure
 - $Al_{0.63}In_{0.37}As/Ga_{0.35}In_{0.65}As/In_{0.53}Ga_{0.47}As$
- 40 quantum cascades

 $\begin{aligned} &Al_{0.63}In_{0.37}As/Ga_{0.35}In_{0.65}As/In_{0.53}Ga_{0.47}As \\ &vs In_{0.53}Ga_{0.47}As/In_{0.52}Al_{0.48}As/InP \\ &\Delta E_{c} = 740 \text{ meV} => \text{lower escape rate} \end{aligned}$

Growth:

10

MBE: Riber 49 Connector Optics Ltd (St Petersburg, Russia) MOCVD: JSC Polyus (Moscow, Russia)

[A.V.Babichev et al., Bulletin of RAS Physics 87, 839 (2023)] [V.V.Dudelev et al, Physics: Uspekhi 67(1), 92 (2024)]

Strain-balanced vs lattice-matched

Ridge width - 50 μm; Cavity length: 5 mm; Uncoated facets Pulsed pumping: ~ 100 ns, 11 kHz

Strain – balanceded

High Output Power > 21 W for QCL with strained design

QCL waveguide losses

Ridge width - 50 μm; Cavity length: 1.5-5 mm, Uncoated facets Pulsed pumping: ~ 100 ns, 11 kHz

Strained vs lattice-matched

Threshold current thermal stability Differential efficiency thermal stability

Blue - lattice-matched design, Red - strain-balanced design

Measurement of QCL heating dynamics Oscilloscope Monochromator Lens Ε 1 GHz b/w \odot \odot PD $=\frac{n}{\lambda_j}\frac{\partial\lambda_j}{\partial t}\Big($ -1 $T' = \frac{\partial n}{\partial t} \left(\frac{\partial n}{\partial T} \right)^{-1}$ $\left(\frac{\partial n}{\partial T} \right)$ 1,2 Power, a.u. $\frac{dn}{dT} \sim 2 \cdot 10^{-4}$ 8042 -1,0 Intensity, a.u. 8040 -10 Mavelength 8038 8034 8038 -0,2 8032 m 0,0-8030 -8,00 8,05 8,10 7,95 14 120-100-80-00 40 Wavelength, µm

Strained vs lattice-matched

Lattice-matched design

Strain-balanced design

15

Active region overheating: CW vs pulsed

Conclusion & Outlook

- ✓ Record-high peak power >21 W (>10 W / facet) @ 8 μ m
- ✓ QCL efficiency depends on cladding composition and doping
- ✓ Estimated waveguide losses are ~ 2 cm⁻¹ for lattice- matched and strain QCL design
- ✓ Active region overheating may reach 100 K
- Optimization of waveguide claddings to reduce optical losses
 Optimization of chip design to improve heat spreading
 Optimization of injector doping to reduce transparency current

... and all other measures to improve efficiency

Thank you! Questions? vlad@kuch.ioffe.ru

This research is supported by the Russian Science Foundation (project 21-72-30020)